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Abstract 

The final report for a Laboratory Directed Research and Development project entitled "Par- 
allel Atomistic Computing for Failure Analysis of Micromachines" is presented. In this 
project, atomistic algorithms for parallel computers were developed to assist in quantifica- 
tion of microstructure-property relations related to weapon micro-components. With these 
and other serial computing tools, we are performing atomistic simulations of various sizes, 
geometries, materials, and boundary conditions. These tools provide the capability to han- 
dle the different size-scale effects required to predict failure. Konlocal continuum models 
have been proposed to address this problem; however, they are phenomenological in nature 
and are difficult to  validate for micro-scale components. Our goal is to  separately quantify 
damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale 
continuum models that will be used for micrwmachine design. Because micro-component 
experiments are difficult, a systematic computational study that employs Monte Carlo meth- 
ods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute 
continuum quantities will provide mechanism-property relations associated with the following 
parameters: specimen size, number of grains, crystal orientation, strain rate? temperature, 
defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study 
will quantify sizescale effects from nanometers to microns in terms of damage progression 
and thus potentially allow for optimized micro-machine designs that are more reliable and 
have higher fidelity in terms of strength. In order to accomplish this task, several atom- 
istic methods needed to be developed and evaluated to cover the range of defects, strain 
rates, temperatures, and sizes that a material may see in micro-machines. Therefore we 
are providing a complete set of tools for large scale atomistic simulations that include pre- 
processing of realistic material configurations, processing under different environments, and 
post-processing with appropriate continuum quantities. By running simulations with these 
tools, we are able to determine size scale effects that correlate microstructure and defect 
configurations with mechanical properties of materials. 

Keywords: Parallel computing, poly-crystalline, dislocations, atomistic simulation. 
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Chapter 1 

Introduction 

In this project, atomistic algorithms for parallel computers were developed to assist in quan- 
tification of microstructure-property relations related to weapon micro-components. With 
these and other serial computing tools, we are performing atomistic simulations of various 
sizes, geometries, materials, and boundary conditions. These tools provide a capability to 
handle the different size-scale effects required to predict failure. Konlocal continuum mod- 
els have been proposed to address this problem; however, they are phenomenological in 
nature and are difficult to validate for micro-scale components. Our goal is to separately 
quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for 
macro-scale continuum models that will be used for micro-machine design. Because micrc- 
component experiments are difficult, a systematic computational study that employs Monte 
Carlo methods, molecular statics, and molecular dynamics (Embedded Atom Method and 
Modified Embedded Atom Method) simulations to compute continuum quantities will prc- 
vide mechanism-property relations associated with the following parameters: specimen size, 
number of grains, crystal orientation, strain rate, temperature, defect nearest neighbor dis- 
tance, void/crack size, chemical state, and stress state. This study will quantify sizescale 
effects from nanometers to microns in terms of damage progression and thus potentially 
allow for optimized micrc-machine designs that are more reliable and have higher fidelity 
in terms of strength. In order to accomplish this task, several atomistic methods required 
development and evaluation to cover the range of defects, strain rates, temperatures, and 
sizes that a material may see in micro-machines. Therefore we are providing a complete set 
of tools for large scale atomistic simulations that include preprocessing of realistic material 
configurations, processing under different environments, and post-processing with appropri- 
ate continuum quantities. By running simulations with these tools, we are able to determine 
size scale effects that correlate microstructure and defect configurations with mechanical 
properties of materials. 

This report presents some details regarding the computer codes developed or enhanced 
for this project including Prewarp, EAMPM, and Warp. 



CHAPTER 1. INTRODUCTION 

1.1 Prewarp 
The pre-processing code (Prewarp) is an atomic lattice configuration generating program. 
The input for prewarp is easy to  use because it is organized around a few simple concepts. 
It was written in C++ and should be portable to most computing platforms. 

Prewarp was developed to provide software capable of generating atomic system configu- 
rations with a variety of defects, grain orientations, and grain boundaries. Prewarp includes 
several simple crystal lattice types, but allows for user input of complex multi-species lattice 
structures through specification of lattice primitive vectors and basis vectors. 

1.2 EAMPM 

EAMPM (Embedded Atom Method Parallel Monte Car1o)is a parallel Monte Carlo code. 
We present the first scalable massively parallel version of a Monte Carlo simulation using 
the Embedded Atom Method (EAM) potential. This code is a valuable tool for studies 
of atomistic systems and the bulk properties of metals that are sensitive to the finite size 
effects at the size scale of the smaller serial simulation. While EAM parallel dynamics codes 
exist, the explicit treatment of time and full trajectory information limit them to the real 
time scales of nanoseconds. The Monte Carlo technique permits u s  to study the equilibrium 
properties of the system. The technique also provides a platform for overcoming the energetic 
barriers, which can effectively trap a dynamics simulation. We expect the simulation to be 
particularly effective at treating multi-component systems, such as alloys, by allowing an 
identity swap as a Monte Carlo update. 

1.3 Updated WARP 
Warp is a parallel molecular dynamics simulation code for modeling stress and strain in 
materials that orginally implemented the embedded atom method (EAM) and Lennard- 
Jones (LJ) potentials. It is written in F90 and performs message-passing via MPI calls. It 
has been used for simulations involving up to 100 million atoms [I], and has the capability of 
easily applying deformation paths to such as tension, shear, and torsion boundary conditions 
[2]. Warp has been modified in this project to include the modified embedded atom method 
(MEAM) potential, multi-species simulation capability and constant pressure equilibration. 



Chapter 2 

Prewarp 

The preprocessing code (Prewarp) is an atomic lattice configuration generating program. 
The input for prewarp is easy to use because it is organized around a few simple concepts. 
It was written in C++ and should be portable to  most computing platforms. 

Prewarp was developed to provide softmare capable of generating atomic system confign- 
rations with a variety of defects, grain orientations, and grain boundaries. Prewarp includes 
several simple crystal lattice types, but allows for user input of complex multi-species lattice 
structures through specification of lattice primitive vectors and basis vectors. 

The key concepts used in prewarp to define an atomic configuration include the system, 
grain, and lattice objects, as well as configuration modifiers. These are similar to the domain, 
element and material type definitions in a finite element model. The system is a region that 
will contain the complete atomic configuration; it includes a boundary and contains a user- 
specified set of grain definitions. Grains are objects that provide a spatial decomposition of 
the system, much like finite elements. They are defined by a location, lattice definition, and 
lattice orientation. A grain may or may not include explicit specification of a boundary. A 
lattice definition is a general framework that contains the information necessary to "build" 
a crystal lattice structure. 

2.1 Concepts 

2.1.1 System 

The system is a container that provides the framework for assembling a set of atomic positions 
that is consistent with a polycrystalline lattice structure. It is constructed by supplying its 
geometric extents, including periodic boundaries, and then defining grains, lattice types 
and defects. Once these definitions are in place the atomic configuration can be built. 
Building the lattice proceeds by first building lattice types defined for the system, and then 
adding lattices to the system based on the geometry and orientation of the grains. After 
construction of the system, other changes can be made such as adding or replacing atoms 
and/or introducing defect structures. 
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h'igure 2.1: On the left is an example of a real microstructure of polycrystalline Ni. On 
the right is an example of a Prewarp polyscrystalline structure with 1.6 million atoms. The 
colors indicate individual grains. 

2.1.2 Grains 

In Prewarp, a grain provides a means of generating a spatial decomposition of the system 
into regions with different crystal lattice structures. A grain is defined by specification of its 
position, lattice type, lattice orientation, and (optionally) a bounding surface. 

The grain position, or site, is the location from which the region occupied by the grain is to 
be determined. How the region is determined depends on whether a boundary is specified. 
If a boundary is specified, such as a sphere, then the spherical region is centered at the 
site. If no boundary is specified, then the region occupied by the grain will be determined 
by the relative positions of other grain sites. This latter procedure generates a voronoi 
decomposition of the system, and is useful for generating configurations that are similar to 
polycrystalline materials as shown in figure 2.1. This lattice is composed of 255 grains and 
includes 1.6 million atoms. 

For easy specification of numerous grains, Prewarp provides automatic grain generation 
of grains. Grain sites can be generated using a grid-based or random site location approaches. 
The grid-based system divides the system block into a number of subregions, placing grain 
sites within the the center of the blocks. This procedure is similar to that described in [3]. 
Orientation of grains may be specified as a random normal distribution of angles in two or 
three dimensions about a primary axis. The distribution angles can be limited by specifying 
a maximum angle. 
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(a) 11,000 atoms 

L 
(c) 172,000 atoms 

(b) 42,000 atoms 

(d) 676,000 atoms 

( e )  3,610,000 atoms ( f )  14,475,000 atoms 

Figure 2.2: Polycrystalline lattices with a single void are shown for various size scales. The 
systems are periodic in the y - dir and individual grains are distinguished by color. The 
atomic positions correspond to perfect lattice positions. 
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2.1.3 Lattices 

Prewarp utilizes a lattice type class that stores the information needed to create most atomic 
crystalline lattice structures. Several built-in lattice structures are available; however, user- 
specified lattices can be included as well. A user lattice is specified by defining its unit cell 
which includes translation vectors for the lattice points and atom coordinates in terms of 
basis vectors. The grain crystal structure is created by the translation of the unit cell along 
the primitive vectors. 

2.1.4 Primitive Vectors 

Unit cells are specified by three vectors primitive vectors that lie along the cell edges. This 
specification includes lattice points only at the corners of the unit cell. The length of the 
vectors are the unit cell dimensions, and their directions are the crystallographic axes. 

2.1.5 Atom Positions 

The contents of the unit cell are defined by specification of the number, type and positions 
of atoms in the lattice relative to the lattice points. In Prewarp, a unit cell may contain 
any number of atoms and any number of atom types. Thus, Prewarp is able to construct 
crystalline alloy structures. The atomic positions in the unit cell are specified in terms of 
basis vectors, which are unit vectors that lie along the lattice primitive directions. The 
pwition of each atom is input by three coordinate values in terms of the basis vectors. 

The simplest arrangements of atoms, applicable to many types of lattice structures e.g. 
single species scp, bcc, and fcc, is a single single atom located at the vertex of the unit cell 
(0,0,O). Specification of unit cells in terms of primitive vectors and atom coordinates allows 
for generation of many complex lattice types with Prewarp. Several examples are shown 
in figures 2.3 - 2.5. Definitions of many types of structures are available in many common 
references such as [4] and on the web [5]. 
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(a) bcc CsC' \ uj bcc CsCl 

( c )  FCC CusAu 

Figure 2.3: fcc and bcc lattice structures generated with P r e w a ~  
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(a) a-Quart% 

(b) &Quartz 

Figure 2.4: Quartz structures generated with Prewarp 
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(a) Tungsten carbide, WC 

(b) Ilmenite, FeTiOs 

Figure 2.5: HCP lattice structures generated with Prewarp. In these figures, the (0001) 
planes are parallel to the xy-plane. 



Chapter 3 

Molecular Statics 

3.1 Introduction 
We present the first scalable massively parallel version of a Monte Carlo simnlation using 
the Embedded Atom Method potential. This code is a valuable tool for studies of atomistic 
systems and the bulk properties of metals that are sensitive to the finite size effects at the 
size scale of the smaller serial simulation. 

While EAM parallel dynamics codes exist, the explicit treatment of time and full tra- 
jectory information limit them to the real time scales of nanoseconds. The Monte Carlo 
technique permits us to study the equilibrium properties of the system. The technique 
also provides a platform for overcoming the energetic barriers, which can effectively trap a 
dynamics simulation. 

We expect the simulation to  be particularly effective at treating multi-component sys- 
tems, such as alloys, by allowing an identity swap as a Monte Carlo update. Overall, we 
expect this simulation to serve as an effective bridge between the atomistic and meso-scales 
in describing the properties of pure metals and metal alloys. 

We have verified the code by comparisons with the serial Monte Carlo version and by 
performing a scaling study. We intend to run a set of simulations to obtain a static stress- 
strain relationship for a large atomistic system, accessible only with the massively parallel 
simnlation. The simulation box size is critical to limit the finite size effects and to reduce 
fluctuations in the stress averages. 

3.2 Embedded Atom Method 

3.2.1 Motivation 

For all elements with unfilled valence shells, an approximation of non-interacting bond 
strengths fails with various degrees of magnitude. The problem with assuming that the 
bond strength is independent of the coordination number lies with the fact that remov- 
ing neighbors strengthens the remaining bonds 161. So any pairwise parametrization that 
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Figure 3.1: The energy of an atom (center) is given by the sum of its pairwise interactions 
with its neighbors and by a functional of the combined neighbor densities at the atom's 
location. 

works for the full coordination in the bulk will break down near the surface. To deal with 
this problem, a many-body parametrization model is needed. The EAM [7] is among the 
most successful such models, that also enjoys the advantage of retaining the locality of the 
potential and the computational efficiency of a pairwise potential. 

3.2.2 Formalism 

The EAM [7] uses a cumulant of effective embedding densities to correct for the deficiencies 
of its pairwise terms. Then the energy of a given atom is given by the sum of its pairwise 
interactions with neighbors and a correction term that is a function of the combined effective 
neighbor densities. 

This later contribution has a many-body flavor! while it still remains local. Both the 
pairwise interaction strength and the density dependent correction are parametrized to fit 
experimental properties. Figure 3.1 illustrates the computational format of the potential. 
The energy of the atom in the center is given by the sum of its pair-wise interactions with 
the neighboring atoms and by the embedding energy function evaluated at the cumulative 
density value contributed by the same neighboring atoms. 
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3.2.3 Difficulties with non-pairwise interactions 

The many-body character of the interaction introduces an added level of complexity. In a 
"pair-wise only" interaction, all the information needed to evaluate energy changes due to 
an update of a single atom position is contained in the positions of the neighboring atoms 
within a certain cutoff radius. The extra correction term requires information of the effective 
embedding densities at the positions of these atoms as well, since no information is given 
about their respective neighbors that lie outside the cutoff radius. 

In a serial version of the code, the information of all positions and all densities is always 
accessible. Therefore, in a serial version of the an energy evaluation, the need for extra 
information can easily be overcome by extending the radius of the neighbor list membership 
to twice the cutoff radius, or by simply referring to a stored list of the respective cumulative 
densities. In a parallel implementation, however, where information is not always local and 
information passing is often the bottleneck, this issue can become critical. 

3.3 Parallel strategy 

3.3.1 Motivation 

Computation speed and memory limitations constrain us to small system sizes which often 
exhibit strong finite size effects. The push for larger system size has been partially addressed 
by parallel computing strategies. For some computational problems, parallel processing has 
paid off with high efficiency returns. Among these successes, bulk atomistic simulations 
with local potentials approach closely perfect scaling efficiency of NIP where N  is the total 
number of atoms in the system, and P  is the total number of processors. Excellent spatial 
domain decomposition (DD) algorithms [B] make this possible. And, while several other 
methods have been introduced to deal with intermediate size non-homogeneous systems [9], 
for very large bulk systems DD remains the algorithm of choice. 

3.3.2 Spatial decomposition 

The power of the spatial decomposition algorithm is in limiting all run time communica- 
tions to purely local ones [B]. While all-t+all communication schemes become exceedingly 
expensive for more then a hundred or so processors, local communication simulations scale 
indefinitely at run-time, making it possible to simulate systems of tens of millions of atoms. 
This property of local potentials is the key to a truly parallel process where operations on 
the remote sections of the simulation can be carried out in complete independence of each 
other. 

The DD algorithm partitions the simulation box into spatial domains of the 3 dimensional 
parallelepiped shape. It then assigns all the atoms within a given domain to an appropriate 
processor. This processor then updates its portion of the system using data structures that 
contain information about its own atoms and the relevant information about the atoms in 
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Figure 3.2: Domains are represented by numerals, while sub-domains are labeled by lower 
case letters. The dark shaded sub-domains are allowed simultaneous parallel update regions, 
while the light shading represents region that supplies information for the update of the 
enclosed sub-domain. 
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the spatially proximate domains. All the necessary information to make update decisions is 
obtained £rom neighboring processors alone. Figure 3.2 is n two-dimensional representation 
of a decomposition topology. 

3.3.3 Checkerboard updating and reduced buffer algorithms 

In the spirit of true parallelism, where operations on different portions of the simulation can 
be carried out independently, one must be certain that the updates on individual processors 
do not interact with each other. This is not guaranteed by topology, since neighboring 
processors can potentially operate on spatially adjacent regions of the simulation. To prevent 
this, a checkerboard updating scheme was developed [lo]. In this scheme, processors operate 
on identical sub-domains which are proximately removed from their counterpart sub-domains 
on the neighboring processors. An example of such a topology is a square domain subdivided 
into quadrants. Figure 3.2 contains an example of such a decomposition. A parallel update 
is performed in the same quadrant of each processor's domain. This method introduces a 
buffer of space around each active region of the simulation, guaranteeing lack of interaction 
during the update. Once the update is complete, a subsequent communication of the changes 
allows updates to be carried out in the next set of sub domains. 

The checkerboard scheme of updating produces another unexpected benefit. Since the 
update is carried out in a particular region only, the neighbor-neighbor communication can 
be reduced from all nearest neighbors to a small subset of the relevant neighbors only. In 
Figure 3.2, this effect is represented by the light shading of the region adjacent to Processor 
4. It becomes apparent that the only processors that need to communicate information to 
Processor 4 are numbers 1, 2, and 3. If the grid extended furthex to include more domains 
adjacent to 4, those processors would not need to communicate. In two dimensions, the num- 
ber of relevant neighboring processors is reduced from 8 to 3. In a 3-dimensional simulation, 
the reduction is from 26 to 7. 

This is a particularly efficient process for an atomistic simulation with local interactions 
since only the coordinates of atoms within the potential cutoff layer need to be passed to 
the neighboring processors. The layer contains a small portion of all the atoms belonging 
to a given processor. This is represented in the Figure 3.2 by a light-shaded band around 
Processor 4. This produces several levels of speed-up. Sn~aller communication buffers lead to 
less communication time. Also, snlaller neighbor arrays lead to smaller loops at processing 
times. 

3.3.4 Reduced communication scheme 

Communication times are often the bottleneck of a parallel simulation. To balance the 
computational time with the respective amount of communication, careful attention must be 
given to the communication process. Each communication period is composed of a latency 
period, and the actual transfer time. Unless the communicated buffer is very large, the 
communication time is dominated by the latency period. With a bit of a computational 
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expense, in three dimensions with the checkerboard updating, the information can be passed 
to the 7 relevant processors in only three explicit communications, thus reducing the number 
of latency periods to 3 instead of 7. This savings is accomplished by indirect passing of the 
communication buffers. For illustration, picture a two-dimensional system where updates 
occur in respective quadrants. An update in the upper left quadrant would need to be 
communicated to the processor above (north), the processor to the left (west), and the 
processor in the corner (north-west). Instead of passing buffers to each of these, we have all 
processors pass north. Then the receiving processors store the buffer received in addition to 
their own and subsequently pass west. This causes the processor in the north-west to receive 
the buffer it was sent from the south-east indirectly in the second communication. In two 
dimensions, the reduction is only from 3 to 2 communications. In higher dimensions, the 
improvement is significantly larger. 

3.4 Embedded Atom Method particulars 

3.4.1 Two-way communication 

The EAM potential, though computationally local, is not pair-wise. The many-body as- 
pects of this potential create complications when they interact with the spatial decomposi- 
tion checkerboard update algorithm. For a pair-wise potential simulation, all the necessary 
external information to carry out an update in a given sub-domain is contained within the 
atomic positions of the relevant neighbor processors. For the EAM, an energy evaluation 
also requires the cumulative density of the same atoms. Since this quantity may depend on 
the atoms that are not in the cutoff range, additional communications are required. 

To illustrate this point, picture two processors responsible for two adjacent spatial do- 
mains. In Figure 3.2, domains 2 and 4 share a north active boundary when an update is 
carried out in the sub-domain 4. To evaluate an energy change associated with this update, 
processor 4 needs atomic positions and cumulative densities of the subset of atoms on pro- 
cessor 2. These then are communicated prior to the update. The update in atomic positions 
on domain 4 sub-domain a leads to potential changes in the respective cumulative densities 
in the sub-domains c and d of domain 2. To update these densities, so that they can be 
reported correctly by domain 2 to the domain 4 for its subsequent update in sub-domain b, 
processor 2 needs to be informed of the nature of the update in 4a. This then needs to be 
communicated by 4 to 2 at  the end of the 1st update. 

This logic is fairly complicated, especially when coupled with the checkerboard updates 
and the reduced communication scheme. In a nutshell, the algorithm uses two communica- 
tions per update: before update, positions and densities of the relevant neighbor domains; 
after update, changes in positions to other relevant neighbor domains. Relevant neighbors 
for each subdomain are predetermined and their identities stored in the initial setup. 
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3.4.2 Domain size restriction 

The many-body nature of the potential also leads to an increased minimum size restriction on 
the domain size. To ensure region independence, we must be certain that energy changes due 
to individual parallel updates can be computed independently. This means that individual 
updates cannot cause two updated atomic positions from two separate domains to affect 
the same cumulative densities. This requires that the resultant spheres of the cutoff radius 
centered on their final positions cannot intersect. This leads to a minimum restriction of 
2 * (c + m), where c is the potential cutoff and m is the maximum move length, on each 
dimension of the sub-domain, and twice that on each dimension of the entire domain. 

3.5 Scaling study 

The scaling study was conducted by running a simulation of a single atom type system 
through one thousand sweeps, where each sweep represents a single atom update attempt 
per sub-domain, or equivalently, eight atoms per processor. The simulation used periodic 
boundary conditions. The atoms were randomly placed. We used silver EAM potential for 
energy evaluations. 

3.5.1 Fixed system size 

A simulation of a fixed size of 35000 atoms was benchmarked running on various processor 
grid sizes. As shown in Figure 3.3, we have achieved nearly perfect scaling over the range of 
interest, where the runtime scales as 1/N with N being the number of processors. This scaling 
rate is indicative of the true parallelism where multiple tasks are performed simultaneously 
with no dependence on the total system size. 

3.5.2 Equal load scaling 

Another traditional test of parallel scaling properties is a simulation for a variable number of 
processors each with a constant load. Here we use 300 atoms per processor for 1000 sweeps. 
For perfect parallelism linear scaling, we can simply turn off the data analysis functions that 
require some all-to-all communication. The data, as shown, includes frequent sampling for 
analysis. 
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Run Time of EAMPM (1000 sweeps) 
Fixed size 150K atoms 

* O J m  

Runtime 
Linear fit 
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1/N (N = Number of processors) 

Figure 3.3: The horizontal axis is the inverse of the number of processors, while the vertical 
axis represents simulation time for a 1000 sweeps.Linear fit demonstrates the linear scaling 
of the times as a function of 1 /N .  
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time per number of atoms moved multiplied by the number of processors. 
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Chapter 4 

Molecular Dynamics: the Modified 
Embedded Atom Method Potential in 
Warp 

4.1 The MEAM Potential 

While the embedded atom method (EAM) potential described in the previous chapter is a 
powerful model for atomic interactions in a bulk metal, modifications can be made to the 
potential make it more general. In the modified embedded atom method (MEAM) [ll], 
additional terms are added to the expression for electron density that improve the accuracy 
of the model, especially near surfaces and defects where the EAM potential alone may be 
inadequate. 

The MEAM potential has been included in the molecular dynamics code Warp, allowing 
the simulation of large scale MEAM systems. In this chapter, we give the form of the MEAM 
potential that has been implemented, along with the analytical form of the derivative of the 
potential used to compute the interatomic forces. 

The MEAM potential has been written in various forms in different publications. In this 
report, the forms and notation used draws most heavily from the presentations in references 
[12] and [13]. 

The total MEAM configuration energy is a sum of direct contributions from all atoms: 

Throughout this chapter, lowercase subscripts like i and j in the above will indicate atom 
labels, while Greek subscripts like cu and P will represent spatial directions for components 
of vectors and matrices. In equation (4.1), the first term corresponds to an environment- 
dependent energy of embedding an atom, while the second term is the pair potential between 
atoms. 
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4.1.1 Embedding energy potential 

The embedding function has the form 

where sublimation energy E: and parameter Ai depend on the element type of atom i. The 
background electron density pi is given by: 

where 

and Gi ( r )  is a function that can be different for different element types in a simulation. 
Common choices for G(T) are G ( r )  = dl + I?) and G(T) = exp(r/2). The zeroth and 
higher order densities py) for k = 0 - 3 are given below in equation 4.7 

The composition-dependent electron density scaling p: is: 

In this expression pie is an element-dependent density scaling, Zio is the first-neighbor coor- 
dination of the reference system, and ryf is given by 

( k )  where si are shape factors that depend on the reference structure for atom i. Shape factors 
for various structures are given in reference [ll]. 

The partial electron densities are given by 

pi"' = C p,"'O'(rij)sij 
j#i 
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The screening function S, will be discussed in section 4.1.3. The atomic electron densities 
are computed as 

(k) where T: is the nearest-neighbor distance in the single-element reference structure and Pi 
are element-dependent parameters. 

Finally, the average weighting factors are given by 

( k )  where t o ,  are element-dependent parameters 

4.1.2 Pair potential 

The pair potential, including the screening effect, is given by: 

where E&, and T:. are parameters that depend on the elements of i and j, while Zijo de- 
pends on the structure of the reference system. The background densities Pi(rij) in equation 
(4.10b) are the densities for the reference structure computed with interatomic spacing rjj. 

Equation (4.10b) can have more complicated forms for some reference structures, but in 
general the derivative of Jij with respect to r ,  is straightforward. 

4.1.3 Screening function 

The screening function S, is designed so that Sij = 1 if atoms i and j are unscreened and 
within the cutoff radius r,; and Sij = 0 if they are completely screened or outside the cutoff 
radius. It varies smoothly between 0 and 1 for partial screening. The total screening function 
is the product of a radial cutoff function and three-body terms involving all other atoms in 
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the system: 

Note that C,i, and C,, can be defined separately for each i - j - k triplet, based on 
their element types. The parameter AT controls the distance over which the radial cutoff is 
smoothed from 1 to  0 near T = T,. 

4.2 Notes on Notation 

Throughout this chapter, we will use a cornma/subscript notation to denote derivatives. A 
lowercase letter and a Greek letter after a comma in a subscript denote differentiation with 
respect to  the position of a single atom: 

,001 - 
a f f .  =- 
ax,, 

Two lowercase letters after a comma denote differentiation with respect to the distance 
between two atoms: 

Except where indicated, two lowercase letters plus a Greek letter after a comma denote 
differentiation with respect to  a single component of the vector between two atoms: 

where 

Note, then, that 
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4.3 Derivatives of the Screening Function 

The screening function Sij is a function only of the distances between atoms. We will need 
only to consider only three derivatives of Sij: that with respect to  the distance between 
the two screened atoms, rij, and those with respect to the distance between either of the 
screened atoms and a third (possibly screening) atom, rik and rjk. 

First we differentiate the parameter C z k j ,  and introduce some notation along the way: 

Note that, because Cik3 is symmetric in i - j :  

For the Bbody screening term Sak3, we can write for a general TI, 

where 

The derivative of Sij, the product of these three-body terms, is 
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Finally, we can include the effects of taking the product with the radial cutoff function 
(which only contributes to  the T,+ derivative), and use the derivatives of C i k i  given in (4.17). 
At the same time, we introduce k notation for the derivatives of Sjj: 

where 

Equations (4.17) and (4.22) are the main results of this section. 
With the notation defined in equation (4.22), we can write the derivative of the screening 

function S, with respect to an arbitrary pair distance TI,. We apply the chain rule, treating 
in turn the dependence of S<j on rij, r i k ,  and r j k :  

4.4 Derivatives of the Electron Densities 
Looking ahead to  section 4.5, we will require the derivatives of the electron densities with 
respect to  interatomic distances TL,, screening functions Sl,, and individual spatial comp* 
neuts of interatomic distances rl,,. Here, we are interested in the erplicit dependence of the 
densities on these arguments; thus, for example, a function that depends on TI, alone has 
zero derivative with respect to  TI,, even though T,, itself is implicitly a function of T,,,. 

Likewise, the implicit dependence of Sl, on rl, is ignored here. 
In this section, we give these derivatives, along with some new notation that takes advan- 

tage of the convenient forms of some of the derivatives. We begin by finding the derivatives 
of the zeroth and higher order electron densities, and then build the derivatives of the total 
background density out of these results. 



4.4. DERIVATIVES OF THE ELECTRON DENSITIES 

4.4.1 Zeroth-order density 

The important derivatives of p,(O) (equation 4.7a) have the forms 

where Jil and 6im are kronecker deltas, and 

4.4.2 Higher-order densities 
W'e will first introduce notation to  simplify the nested summations required for computation 
of the higher-order densities. Define: 

Then the higher order densities (4.7) can be written: 

3 

3 3 
1 2  (pt")" C yz& - jW2i 

."=I p=1 
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(note the minus sign in (4.29c), due to the antisymmetry of rim,). The individual terms in 
these derivatives are computed as given below: 
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All summations in the above expressions are over spatial indices ranging from 1 to 3. Note 
that we can take advantage of the symmetry of the arguments of the nested summations; 
thus, double sums can be evaluated using 6 terms rather than 9, while triple sums can be 
evaluated using 10 terms rather than 27. This is also true of the summations in equation 
(4.27). 

4.4.3 Derivatives of the averaged weighting factors 

The derivatives of the average weighting factors t?) (equation 4.9) have the forms 

at?) (k)@Sil + at!k)@s,m 
- = at,, 
anm 11 

where 

Note as a check that for the case where all atoms are of the same element type, and therefore 
have the same weighting factors, t y )  = t$ and the derivatives are zero, as expected. 

35 
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4.4.4 Derivatives of ri 
The derivatives of r, (equation 4.4) have the forms 

where 

1 3 

ar,, = - x t!k)apj$) 
( ~ i o ) ) ~  ,=I 

4.4.5 Derivative of the total density 
The derivative of the total background density (equation 4.3) can be easily derived using the 
derivatives in the previous subsections. They take the forms: 

a,$' 
- O O .  - apim &r + aPil 6,, 
arim 

a#' Q 0 .  
--- = a&, 6,1+ 6,, asij 
a ~ ! ~ '  a- - aPirndi1 + aP,I.dirn hma 
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where 

Note that pf in these expressions is the composition-dependent electron density scaling given 
in equation (4.5). 

Equations (4.35) and (4.36), together with the derivatives of the higher-order densities 
in equation (4.30), are the main results of this section. 

4.5 Derivatives of the MEAM Energy 

With the derivatives of the electron density in hand, we can compute the derivative of the 
full MEAM potential energy. We have a choice between computing the derivatives with 
respect to individual atomic positions xi,, or to pairwise distances rij, The force on an 
atom is most directly computed from the former: 

aE f. err - 
axie 
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However, by the chain rule this can be converted to a form involving the pair derivatives: 

where 

The chain rule can be used to write this derivative in terms of the explicit dependencies 
on rij, S,, and riju. Note that many of the pairwise screening functions (and not just that 
between atoms i and j )  can depend on rij,, and thus we must take into account all of these 
terms in the chain rule and use equation 4.24 to  simplify the expression. 

The coefficient 112 in the first line is due to  the symmetry of SL,. 
It  should be understood that the rij, derivative on the left hand side of 4.40, and in the 

definition of equation 4.39, refers to all of the dependencies (both explicit and implicit) of 
E on r,ja, while that on the right hand side of 4.40 includes only the explicit dependencies 
(i.e. holding all rij and Sij constant). Also, note that all nested summations over atoms 
are restricted to  unlike pairs, even where not noted; thus, the summations over 1 and m in 
the above expression would more accurately (though less compactly) be written and - 
Lm#~,z,j. 

The individual derivatives of the energy are: 
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where dp?, doQ and a&, are given in (4.36). The derivative of the embedding function, 
from (4.2), is 

F,'(pi) = AiE:(ln p6 + 1). (4.42) 

The derivative of the pair potential function & depends on the reference structure. In the 
current implementation of the MEAM potential, the pair potential functions for all element 
pairs is tabulated for discrete values of T, before the simulation begins. The function and 
its derivative are then computed from this table using cubic spline interpolation during the 
simulation. 
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Postprocessing 

5.1 Introduction 

This chapter presents a method for computing strain tensors from the incremental motions 
generated by atomistic simulations that are consistent with strain tensors defined in the 
continuum mechanics framework. Strain tensors are the primary measure of local distortions 
used in continuum analysis. Unlike displacement, strain is not a measurable quantity, but 
is computed from a definition that relies on the gradient of a continuous displacement field. 
Atomistic simulations provide detailed information regarding atomic displacements; however, 
the discrete form of the data makes the definition of local distortion in terms of strain 
troublesome, and thus correlation with larger scale continuum results can be difficult. 

In order to provide a common measure of distortion, a local atomic strain tensor needs 
to be defined. Because strain is fundamentally a continuum quantity, its computation from 
atomic displacement data requires either interpolation of a continuous displacement field or 
a discretization of the gradient operator. In this work we present the latter approach. 

At least two methods for computation of a strain tensor have been proposed in the lit- 
erature. Mott [14] presents a local atomic strain measure for three-dimensional, disordered 
systems such as glass. Here, the atomic displacements are interpolated using a continuous, 
piecewise-linear basis formed by a Delauuay tessellation of the atomic positions. The dis- 
placement at any point in a tetrahedron is a linear function of the displacements of the 
atoms at its vertices, and the deformation gradient is constant. The local atomic deforma- 
tion gradient is then defined as a weighted average of the deformation gradients of adjacent 
tetrahedrons. This approach can be computationally expensive due to the required geomet- 
ric decomposition, thus its usefulness for simulations that include significant plastic flow is 
limited. 

Falk [15] constructs a local atomic strain tensor using small-strain definitions that do not 
directly depend on the deformation gradient. In this approach, a locally constant atomic 
strain tensor is computed based on the relative motion of an atom and its nearest neighbors. 
Although this formulation is straightforward, its application is restricted because a small- 
strain formulation does not account for strain history and is only accurate for very small 
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strains. 
We propose an atomic strain tensor that is appropriate for finite, multi-axial deformation 

states, that accounts for interactions between many atoms in a nonlocal fashion, and is based 
on the definition of a discrete equivalent to the continuum deformation gradient. 

Notation is standard, with Cartesian tensors being distinguished from scalars by bold 
font. The term discrete should be understood to refer spatially discontinuous nature of a 
body composed of a finite number of atoms, and incremental refers to the temporally discrete 
sequence of atomic configurations generated by atomistic simulations. 

5.2 Strain Formulation 

In this section we briefly consider the continuum deformation gradient, introduce a discrete 
version of the deformation gradient, and finally present the strain tensors. 

5.2.1 Continuum Deformation Gradient 

As motivation for a discrete deformation gradient, we first consider some fundamental aspects 
of continuum mechanics. For simplicity, assume a fixed Cartesian coordinate system and 
assume the particles are identified by the position vector that specify their place in the 
initial configuration. Now consider a motion x that maps a particle from its initial position 
X  in the reference configuration Ro, to its position x  in the current configuration R1, 

Assuming sufficient continuity, the local deformation is characterized as the gradient of the 
motion, which is a second order, two-point tensor defined as 

ax ax F = - = -  
ax ax' 

The deformation of an infinitesimal segment dX at point X  in the reference configuration 
is given by: 

d x = x ( X + d X ) - , y ( X ) .  (5.3) 

Expanding 5.3 in a Taylor series, 

d x = x ( X ) + V x ( X ) . d X + o ( d X )  - x ( X )  (5.4)  
dx = V X  ( X )  . d X .  (5 .5 )  

In 5 .4 ,  the notation o (.) takes the usual meaning of a term that approach zero faster than 
its argument (.). Substituting F from 5.2 into 5.5  results in: 
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Similarly, because of regularity assumptions the reverse mapping is given by 

Thus F maps an arbitrary, infinitesimal vector dX at X in the reference configuration to  
dx at x in the current configuration. 

5.2.2 Strain Tensors 

Strain is a measure of the distortion of the vector as a result of the mapping between 
configurations. While many strain measures are possible, e.g. see [16], we consider two 
common measures. From equation 5.6, the change in the squared length of the vector dX 
is given by 

~ x . ~ x - ~ x . ~ x = ~ x . F ~ F ~ x - ~ x . ~ x ,  (5.8) 

Here the distortion is characterized entirely in terms of the reference configuration by the 
dimensionless, symmetric second order tensor 

The Lagrangian or Green strain tensor, C ,  is defined with respect to  reference coordinates 
in terms of this quantity as 

c = ~ ( F ~ F - I ) .  2 (5.11) 

The Eulerian or Almansi strain tensor, B, which described in terms of the current configu- 
ration is derived from equation 5.7 and is given by 

At small strains, when the deformation gradient components are small compared to  I, these 
measures are equivalent. The Green strain is more suitably used in elasticity, since there is 
usually an undeformed state t o  which the body is elastically unloaded. The Alrnansi strain 
is more suitably used for large strain measures, because of the presence of dislocations in the 
distorted the lattice. 

5.2.3 Discrete Deformation Gradient 

The absence of a continuous displacement field prevents computation of the deformation 
gradient (equation 5.2) from atomistic simulation data. In this subsection, we propose a 
deformation gradient that emerges from a optimization of a discrete form of equation 5 .6 .  

A few definitions are now introduced. The generic time increment under consideration 
is assumed to  be such that t E [to,  t,+,]. The atomic configurations under consideration at  
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Figure 5.1: General motion in the neighborhood of a discrete atomic particle. The areas 
labelled no and 0 1  represent the atomic system in reference and current configurations. The 
shaded circles represent discrete atomic positions that are specified with position vectors 
X m  and xm in the reference and current configurations. 

t = to and t = tn+l are denoted by no and 0,+1. The deformation gradient mapping between 
these configurations is Fn+l .  Note that F,+1 is the deformation gradient with respect to 
the global reference configuration. 

Consider the deformation in the neighborhood of atom m that characterized by the 
changes in the of relative position of its neighbors as shown in figure 5.1. Atom m, is 
located at the position X m  in configuration 00 and position xm in configuration Rn+l. In 
configuration 00 the relative position of neighbor in atom n is given by the vector 

and in configuration by 
Axmn = xn - xm. (5.14) 

In equations 5.13 and 5.14 the superscripts denote atom numbers, and the vectors AXmn 
and Axmn connect atom m to its neighbors n. There exists a unique linear mapping that 
transforms the relative position vector AXmn to Axmn: 

or in index notation 
A Z ~  = F~~Ax;... 

Equation 5.15 defines the operation of the discrete deformation gradient at atom m in a 
manner analogous to the continuum of equation 5.6 in that it maps a vector connecting 
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atoms m and n in the reference configuration to  a vector segment connecting atoms m and 
n in the current configuration. 

We can describe the deformation in the neighborhood of atom m more completely by 
writing equation 5.6 for each of its neighbors. The set of equations generated by this pro- 
cedure will not generally be satisfied by a single mapping F, instead an optimal one is 
sought. 

Consider the the mapping error for an approximate F :  

The total, the weighted least squares error among all neighbors of m is given by 

or in index notation, 

where N is the total number of neighboring atoms, and wl is a weight factor that diminishes 
with the length of Axm. Minimizing $J with respect to the components of F leads to  

-- a' - x ( -2AzyAXy + 2 A X p F , , A X r )  w,. 
aFij 

Setting 5.21 equal to  zero and solving for the components of F :  

n n 

or in matrix notation 

or 

in which 
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and 

Then provided that D was formed from at least three non-coplanar nearest neighbors having 
nonzero weights the discrete deformation gradient is now determined as 

Equation 5.28 defines the deformation gradient of Q,+' with respect to 9- 

5.2.4 Weight Function 

The weight function plays an important role in the formulation of the deformation gradient. 
Generally, we seek for nearest neighbor atoms to have a stronger influence on the computation 
than those farther away. Thus, the weights should be relatively large for nearest neighbors, 
and diminish as a function of the distance between the atoms and its neighbors, wr = 
w (Axm') . Figure 5.2 shows an example, step weight function. Here the weight function is a 
set of steps starting with a maximum value of 1 and decreasing to zero. It is important that 
the step function have a zero spatial gradient to eliminate the influence of thermal vibrations 
on the computed strains. 

With this form, different cutoff distances can be used for various materials to allow for 
examination of the nonlocal domain of influence. 

5.2.5 Discussion 

An essential difference between the properties of the discrete deformation gradient defined by 
equation 5.15 and the continuum form should be noted. The continuum deformation gradient 
depends on the existence of a body comprised of a continuous distribution of material and a 
smooth, differentiable motion. These assumptions engender an integrability condition: that 
the curl of the deformation gradient vanishes. In the discrete system, only a succession of 
atomic positions is considered, and while the motion of the atom is assumed to be smooth, 
no postulation of a smooth motion of a continuous region of space is made. Furthermore, the 
discrete deformation gradient is not known as a function of time and spatial position, but 
only at atomic positions; hence, no integrability conditions, similar to those of the continuum 
deformation gradient, are required. On the other hand, the results of this procedure can 
be viewed as determining the locally linear motion or constant deformation gradient that 
optimally (in a weighted least-squares sense) approximates the true motion. This is observed 
from the fact that if the discrete atomic positions are prescribed by a globally linear motion, 
such as simple shear, then this method will recover the exact deformation gradient. Thus 
the locally constant deformation gradient satisfies the integrability conditions. 
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Figure 5.2: An example weight function. The weights used are given by the step function. 
The values of the weight function are determined by a monotonically decreasing function 
such as the cubic spline shown. The weight function maintains a value of one for all nearest 
neighbors then decreases for neighbors farther away. 

5.2.6 Example Strain Calculation 

This simulation provides an example of the computed strain for a single crystal slab of 
atoms subjected to fixed-end, simple shear boundary conditions. The slab geometry, shown 
in Figure 5.3(a), is 35 A high, 140 long, and 4 unit cells thick. The lattice is fcc Nickel with 
crystal directions (loo), (011) and (010) corresponding to the x, y, and z axes respectively. 
The boundary conditions applied to the slab include a constant velocity of v, = 0.035 .&Ips 
and v, = 0.0 on the +y, while holding the -y surface atoms fixed as shown in Figure 
5.3(b). Periodic boundary conditions are applied in the z direction. The velocities of the 
interior atoms were initialized using a Boltzmann distribution at  300K, and the system was 
equilibrated to accommodated any surface relaxation on the f x surfaces before the shear 
velocity was applied. Note that these boundary conditions diier from a rigorous continuum 
description of simple shear in that the x faces are free to deform and do not remain parallel 
during the simulation and the prescribed shear velocity is only applied to the atoms on the 
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(a) initial configuration 

b 

(b) strained configuration 

Figure 5.3: Schematic of simulation block of atoms at the (a) initial configuration and (b) at 
large strain in which the clear circles represent active atoms and the dark circles represent 
boundary atoms. 

+y surface. Because the interior atoms were not initialized with a superimposed x - dir 
velocity, a shock is introduced into the block of material when the shear velocity is applied. 

The system stress, Green strain and Almansi strain tensors were computed for this simu- 
lation. The stress was computed using the viral stress definition given by equation 6.1. The 
strain tensors were computed according to equations 5.11 and 5.12 using the deformation 
gradient of 5.28. 

The results of the simulation are summarized in Figures 5.4 to 5.6. The shear strain 
averagea are shown in Figure 5.4, and the percent difference in the average Green and 
Alrnansi shear strains are shown in Figure 5.5. 

Qualitatively, Figure 5.4 shows that, the average Green and Almansi shear strains increase 
over the course of the simulation at a rate that corresponds well with a simple shear response. 
At 8% strain the system attains a maximum stress and from this point the average Green 
and Almansi strain values begin to diverge, with the Almansi strain increasing at a lower 
rate than the Green. 

Figure 5.5 shows Green and Almansi shear stress values have an initial difference of 
approximately 3% that quickly decreases to approximately 1%. This is likely due to the 
initial shock response of the material.At 4% applied strain, a jump in the in the shear strain 
values occurs. This point corresponds to a slight drop in slope of the stress-strain curve 
which indicative of dislocation nucleation. At this same time the difference between strains 
jumps to approximately 10%. The difference then decreases slowly until another jump occurs 
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at the system's yield point of 8% strain. After 10% strain, the difference between the Green 
and Almansi strain measures increases apart from changes in the stress state of the system. 

The local atomic strains are shown in Figures 5.7 and 5.6. These figures show that the 
strain is oriented with the crystallographic planes. The Green strain show most activity 
along the (111) planes, while the Almansi shows activity along the ( i l l ) .  
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-+ - Ave Almansi Shear 

0.0 0.020 0.040 0.060 0.080 0.10 0.12 

Applied Strain 

Figure 5.4: The computed average local Green and Almansi shear strains along with the 
average shear stress are plotted vs applied strain. 



CHAPTER 5. POSTPROCESSING 

-Q- Green and Alrnansi % Diff 

Strain 

Figure 5.5: The percent difference in the computed average local Green and Almansi shear 
strains are plotted vs applied strain. 
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Figure 5.6: Almansi strain at  12% strain 

Figure 5.7: Green strain at 12% strain. 



Chapter 6 

Computational Example 

6.1 Introduction 
It was found in work by Horstemeyer et al. [l] that the failure of a material simulated with 
MD is dependent on the length scale of the material. Specifically, the yield strength of a 
material decreases with increasing size. This trend was seen in a range of specimen sizes from 
about 2 nm to 2 pm. All of these specimens were single crystals without initial defect, and 
failure initiated by the emission of dislocations at the corners of the rectangular specimens. 

In real materials, ductile failure occurs due to the nucleation, growth and coalescence of 
voids. In order to use MD to simulate this process, it is important to first understand what 
the effects of specimen size might be on these void dynamics. As a first step toward this 
understanding, we have explored the effects of length scale on void growth under uniaxial 
tensile strain. 

6.2 Problem Statement 
The geometry used in our simulations is shown in Figure 6.1. A thin rectangular slab of 
nickel with a void at its center is strained uniaxially in the x direction. The test section has 
length 2L, and 2L, in the x and y directions, and thickness L,. The void radius is R,. 

6.2.1 Atomic lattice 

We use an atomic representation of nickel using a MEAM potential. The lattice spacing 
of nickel is a = 3.52 A, giving an equilibrium atomic spacing of re = 2.49 A. The crystal 
directions (loo), (011) and ( O i l )  correspond to the x, y, and 2 axes! respectively. 

6.2.2 Boundary conditions 

The uniaxial strain is applied by imposing a constant velocity w, = f CL, on one unit cell- 
thickness of atoms on the f x surfaces. Periodic boundary conditions are applied in the y 
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Figure 6.1: Geometry used for uniaxial tension void growth tests. 

and z directions. Note that this implies zero strain in the y and z directions, so that the 
condition is one of uniaxial strain (and not necessarily uniaxial stress). 

6.2.3 Initial conditions 

Before the uniaxial strain is applied, the system is run for lops at a constant temperature of 
300K for equilibration. A Nosh-Hoover thermostat 1171 is used to enforce constant tempera 
ture. When the equilibration phase is finished, a linear x velocity profile v, = gx is applied 
to all atoms. This is done in order to avoid an initial shock wave, which otherwise would 
result from the instanteous application of the boundary conditions on the f x surfaces. 

6.2.4 Run cases 

Four cases are run in this study, summarized in Table 6.1. The cases have increasing values 
of L,, L,, and R,, such that the ratios between these quantities (and therefore the initial 
void volume fractions) are constant throughout the cases. The thickness L, is kept constant 
throughout the cases. The number of atoms in the simulations ranges from about 11,000 in 
the smallest run to about 642,000 in the largest. 
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Table 6.1: Summary of cases run 

6.2.5 Data collection 

A number of quantities are computed and output periodically throughout the simulations. 
These include stress! void fraction, and centresymmetry parameter. 

The stress is computed according to the virial stress definition: 

where i and j are indices representing spatial directions, cu and /3 are atom indices, and the 
notation (.), represents an average over atoms cu. In the region near the void, the reduced 
y - z cross-section of the specimen is expected to  lead to  an increased stress. This increased 
stress, however, does not correspond to an increase in the macroscale stress that would be 
measured in the continuum; it is a result of the microscale geometry only. In order to  avoid 
this unwanted stress increase, the average in equation 6.1 is taken only over atoms with an 
initial x position such that 1x1 2 2R,, so that atoms close to the void (in the x direction) 
are not counted. 

The void fraction is computed by discretizing the computational domain into a grid of 
cells of size slightly larger than the equilibrium spacing of the atoms T,. The volume of the 
solid is then approximated by counting the number of cells that contain atoms, while the 
volume of the void is computed as the number of cells interior to  the material that have 
zero atoms. The "interior of the material" is defined by examining each row of cells in the 
x direction; the interior is the range of cells lying between the extreme atom x positions in 
that row. Thus any empty cell that has non-empty cells beyond it in both the +x and -x 
directions is considered part of the void. With this definition, we can account for void volume 
created through the nucleation of new voids, but do not count the empty space beyond the 
boundaries of the specimen in the x direction. 

The centro-symmetry parameter of a given atom provides a measure of the level of dis- 
turbance of that atom's environment from the symmetric crystal structure. The formula for 
the parameter for an FCC crystal is [18]: 
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The summation in this expression is taken over the six pairs of opposing neighbors of an 
atom. For an atom in a perfect FCC crystal at equilibrium, the centro-symmetry parameter 
is zero. A larger value is computed near surfaces, grain boundaries and defects. By plotting 
the atoms with a centro-symmetry parameter larger than some cutoff value (usually 2.0), we 
can visualize the dislocation structure of the deforming material. 

6.3 Results 
A series of snapshots for each run is shown in Figures 6.2 through 6.5. Qualitatively, we 
see that several similarities exist across all runs. Initially, all deformation is elastic; and 
no dislocations can be seen. The beginnings of plastic failure are seen when dislocations 
are emitted from the void surface. The first dislocations propagate along the close-packed 
planes of the material, in this case the (111) planes at  an angle of f 35.3" to the x axis. 
The dislocations form an "X" pattern on these planes before spreading to  fill most of the 
material. The void grows in a symmetric elliptical shape early in the deformation before 
becoming much more irregular; most of the void growth occurs in this irregular shape. 

Several differences between the runs are also apparent. For the larger runs. dislocations 
are emitted at a lower strain than for smaller runs, indicating that plastic deformation 
occurs sooner in the larger runs. For example, in run 1 no propagation of dislocations is seen 
until between 8% and 12% strain, while for run 4 it is clear that dislocations have already 
propagated at  4% strain. Another very interesting phenomenon is seen only in the largest 
run, case 4. At around 9% strain, two small new voids nucleate slightly away from the 
surface of the central void. As the strain increases, these voids grow and eventually coalesce 
with the larger void. This behavior is not seen in any of the other simulations. 

More quantitative comparisons can be made by looking at the stress-strain curves in 
Figure 6.6. Immediately after the equilibration stage (t = 0 in the figure), there is a small 
compressive stress due to the temperature expansion (the initial configuration is at equilib- 
rium at  T = OK), and this stress is equal for all four simulations. When the tensile strain 
is applied, initially all deformation is elastic with an elastic modulus that is constant across 
the simulations. 

Differences among the simulations begin to occur at around 4% strain. At this point, the 
largest simulation deviates from the elastic behavior; this corresponds to the dislocations 
seen being emitted from the void surface in Figure 6.5(b). This yield point happens at a 
larger strain (and stress) for each of the smaller simulations in turn. Thus we see that yield 
strength increases as specimen size decreases, which is identical to the results of Horstemeyer 
et a1 [I]. 

After yielding, the smallest simulation shows a sharp drop in stress such as might be 
seen in brittle failure. However, the stress does not drop completely to zero at this point, 
but we see an overall downward trent characterized by periods of slow increase interspersed 
with sharp decreases. Thus, this nanoscale failure appears to be discrete in nature. As 
the simulations get larger, the drop in stress at yield becomes less precipitous, and fluctu- 
ations become smaller. For the largest simulation, run 4, the behavior is similar to that of 
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macroscale plastic failure, with a smooth transition from elastic to plastic deformation; this 
is apparently the result of the discrete dislocation motions seen in run 1 being "averaged 
out" over these larger scales. 

The void growth curves for the four simulations are plotted in Figure 6.7. The onset of 
fast void growth for each simulation in this figure corresponds to the yield point in Figure 6.6. 
In general, it is expected that the plastic deformation will be incompressible, and therefore 
volume conserving. Therefore, the total change in volume of the material plus void will be 
due to void growth alone. By this geometric argument, the void volume fraction is expected 
to be approximately a function of the strain alone: 

where Vf is the void fraction, Vf,o is the initial void fraction, and cP is the plastic strain. In 
Figure 6.8, this expression is plotted along with the simulated void fractions, where now the 
x axis shows an approximation of the plastic strain, defined simply as the total strain minus 
the yield strain estimated from Figure 6.6. The four curves overlay this line fairly well. 

6.4 Discussion 

As in previous studies, these simulations of void growth confirm that yield strength is a 
function of specimen size at these very small scales. As size increases, yield strength increases, 
and stress-strain behavior begins to approach that of the continuum as fluctuations are 
averaged out over many atoms. 

However, it appears that other than the change in yield strain, there is not a large effect 
of length scale on void growth. In Figure 6.8, showing void growth vs. plastic strain, all four 
curves approximately overlay the theoretical line that is derived from geometrical arguments 
alone. Thus we conclude that for these single-void simulations, once plastic deformation 
initiates, void growth behavior is universal across the length scales studied. Nothing can be 
said at this point, however, about length scale effects on void nucleation or coalescence. 

One interesting phenomenon seen here is the nucleation of smaller voids away from the 
surface of the large void in Figure 6.5. This is an unexpected result that is not normally 
accounted for in void growth models. Further studies should be undertaken to determine 
whether this is a real phenomenon, or an artifact of some artificial aspect of our simulations 
such a s  the very high strain rate. 
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(a) E = 0% 

(e) E = 16% 

(b) E = 4% 

(d) E =12% 

(f) € = 20% 

Figure 6.2: Development of dislocation structure for run 1. 
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(a) c = 0% 

( c )  € = 8% 

( e )  c = 16% 

(b) r = 4% 

(d) r =  12% 

(f)  r = 20% 

Figure 6.3: Development of dislocation structure for run 2. 
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(a) r = 0% 

(e)  c = 16% 

(b) E = 4% 

(d) E = 12% 

(f) E = 20% 

Figure 6.4: Development of dislocation structure for run 3. 
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(a) r = 0% 

(e) r = 12% 

(b) r = 4% 

(d) E = 9% 

(f) E = 20% 

Figure 6.5: Development of dislocation structure for run 4. 
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Figure 6.6: Stress-strain behavior of the four simulations. 
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Figure 6.7: Void fraction vs. strain. 
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Figure 6.8: Void fraction vs. plastic strain. 
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