
Table of Contents
LAMMPS Documentation...1
1. Introduction..2
2. Getting Started...9
3. Commands...18
4. How−to discussions...22
5. Example problems...27
6. Performance &scalability...28
7. Additional tools..29
8. Modifying &extending LAMMPS...33
9. Errors..44
10. Future and history..70
angle_coeff command..73
angle_style command...75
atom_modify command...77
atom_style command...77
bond_coeff command...79
bond_style command...81
boundary command..83
cd command...84
clear command...85
create_atoms command..86
create_box command...86
delete_atoms command..87
delete_bonds command..88
dielectric command..90
dihedral_coeff command...90
dihedral_style command..94
dimension command..96
dipole command...96
displace_atoms command..97
dump command..98
dump_modify command..101
echo command...102
fix command..103
fix addforce command...104
fix aveforce command..105
fix com command..106
fix drag command..106
fix efield command..107
fix enforce2d command...108
fix freeze command..108
fix gran/diag command..109
fix gravity command..110
fix indent command...111
fix insert command..112
fix langevin command..114
fix lineforce command...115
fix_modify command...115

i

Table of Contents
fix msd command...116
fix nph command...117
fix npt command..119
fix nve command..121
fix nve/gran command...121
fix nvt command..122
fix planeforce command..123
fix rdf command...123
fix rigid..124
fix setforce command...126
fix shake style..126
fix spring command...128
fix temp/rescale command...129
fix tmd command...130
fix viscous command...132
fix volume/rescale command...132
fix wall/gran command..133
fix wall/93 command...134
fix wiggle command..135
group command...136
improper_coeff command..137
improper_style command...140
include command...141
jump command..142
kspace_modify command..142
kspace_style command..144
lattice command...145
log command..146
mass command...146
neigh_modify command..147
neighbor command...149
newton command...150
next command..151
orient command...152
origin command...153
pair_coeff command..154
pair_modify command...161
pair_style command...163
pair_write command..170
processors command..171
read_data command...172
read_restart command..180
region command...181
replicate command...183
reset_timestep command..184
restart command...184
run command...185
run_style command..186

ii

Table of Contents
set command..188
special_bonds command..189
temp_modify command...190
temper command..191
temperature command..192
thermo command...194
thermo_modify command..194
thermo_style command..195
timestep command...196
undump command..197
unfix command..197
units command...198
variable command..199
velocity command..200
write_restart command...203

iii

LAMMPS Documentation

(10 Nov 2005 version of LAMMPS)

LAMMPS stands for Large−scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open−source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary author of the code is Steve Plimpton, who can be contacted at sjplimp@sandia.gov. The
LAMMPS WWW Site at www.cs.sandia.gov/~sjplimp/lammps.html has more information about the code and
its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send us an email so we can improve the
LAMMPS documentation.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non−features
1.4 Open source distribution
1.5 Acknowledgements and citations

1.

Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Running LAMMPS
2.4 Command−line options
2.5 Screen output
2.6 Tips for users of previous versions

2.

Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

How−to discussions
4.1 Restarting a simulation
4.2 2d simulations
4.3 CHARMM and AMBER force fields
4.4 Multiple simulations on different partitions
4.5 Parallel tempering
4.6 Granular models
4.7 TIP3P water model

4.

Example problems5.
Performance &scalability6.

LAMMPS Documentation 1

http://www.cs.sandia.gov/~sjplimp
mailto:sjplimp@sandia.gov
http://www.cs.sandia.gov/~sjplimp/lammps.html
mailto:sjplimp@sandia.gov
http://www.easysw.com/htmldoc

Additional tools7.
Modifying &Extending LAMMPS8.
Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.

Future and history
10.1 Coming attractions
10.2 Past versions

10.

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

1. Introduction

These sections provide an overview of what LAMMPS can and can't do, describe what it means for
LAMMPS to be an open−source code, and acknowledge the funding and people who have contributed to
LAMMPS over the years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non−features
1.4 Open source distribution
1.5 Acknowledgements and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, or granular systems using a variety of
force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single−processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supports the MPI message−passing
library. This includes distributed− or shared−memory parallel machines and Beowulf−style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See this section for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW
Site.

LAMMPS is a freely−available open−source code, distributed under the terms of the GNU Public License,
which means you can use or modify the code however you wish. See this section for a brief discussion of the
open−source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom
types, boundary conditions, or diagnostics. See this section for more details.

1. Introduction 2

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www-unix.mcs.anl.gov/mpi
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.gnu.org/copyleft/gpl.html

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See this
section for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs.
See this section for more information on LAMMPS funding and individuals who have contributed to
LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,
molecules, or macroscopic particles that interact via short− or long−range forces with a variety of initial
and/or boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of
nearby particles. The lists are optimized for systems with particles that are repulsive at short distances, so that
the local density of particles never becomes too large. On parallel machines, LAMMPS uses
spatial−decomposition techniques to partition the simulation domain into small 3d sub−domains, one of which
is assigned to each processor. Processors communicate and store "ghost" atom information for atoms that
border their sub−domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3d
rectangular box with roughly uniform density. Papers with technical details of the algorithms used in
LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see this section,
which describes how you can add it to LAMMPS.

Kinds of systems LAMMPS can simulate:

(atom style command)

atomic (e.g. box of Lennard−Jonesium)•
bead−spring polymers•
united−atom polymers or organic molecules•
all−atom polymers, organic molecules, proteins, DNA•
metals•
granular materials•
hybrid systems•

Force fields:

(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)

pairwise vanderWaals, Coulombic, Buckingham, Morse, Yukawa potentials•
long−range Coulombics via Ewald summation or particle−particle particle−mesh (PPPM)•
CHARMM, AMBER, class 2 (COMPASS) force fields•
bond potentials (harmonic, FENE, nonlinear, Morse, bond−breaking)•
angle potentials (harmonic, cosine)•
dihedral potentials (harmonic, multi−harmonic)•
out−of−plane potentials (harmonic, cvff)•
embedded atom method (EAM) for metals and metal alloys•

1. Introduction 3

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.sandia.gov

frictional force fields for granular materials•
tabulated pairwise force fields•
hybrid pairwise force fields (e.g. combinations of pairwise potentials)•
hybrid bond force fields (e.g. combinations of bond potentials)•

Creation of atoms:

(read_data, lattice, create_atoms, delete_atoms, displace_atoms comands)

read in atom coords from files•
create atoms on one or more lattices (e.g. grain boundaries)•
delete geometric or logical groups of atoms (e.g. voids)•
displace atoms•

Ensembles, constraints, and boundary conditions:

(fix command)

constant NVE, NVT, NPT ensembles•
temperature control via rescaling, Nose/Hoover, or Langevin thermostatting•
pressure control via Nose/Hoover barostatting in 1 to 3 dimensions•
volume rescaling•
altered motion via velocity and force constraints•
harmonic (umbrella) constraint forces•
dragging of atoms to new positions•
SHAKE bond &angle contraints on small clusters of atoms•
rigid body motion of one or more groups of atoms•
wall constraints of various kinds•
targeted molecular dynamics (TMD) constraints•
gravity•

Integrators:

(run, run_style, temper commands)

velocity−Verlet integrator•
rRESPA hierarchical time integrator•
parallel tempering (replica exchange) across multiple simulations•
multiple independent simulations simultaneously•

Output:

(dump, restart commands)

binary restart files•
text dump files of atom coords, velocities, other per−atom attributes•
per−atom energy, stress, centro−symmetry parameter•

1. Introduction 4

Pre− and post−procsessing:

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

1.3 LAMMPS non−features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting
particles. Many of the tools needed to pre− and post−process the data for such simulations are not included in
the LAMMPS kernel for several reasons:

the desire to keep LAMMPS simple•
they are not parallel operations•
other codes already do them•
limited development resources•

Specifically, LAMMPS itself does not:

run thru a GUI•
build molecular systems•
assign force−field coefficients automagically•
perform sophisticated analyses of your MD simulation•
visualize your MD simulation•
plot your output data•

A few tools for pre− and post−processing tasks are provided as part of the LAMMPS package; they are
described in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses
some of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force−field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and
assign force−field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid−state lattices
(fcc, bcc, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond coeff,
angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users typically
use another code as a builder and convert its output to LAMMPS input format, or write their own code to
generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force−field coefficients must typically be specified. We suggest you use a program like CHARMM or
AMBER or other molecular builders to setup such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post−process these files with their
own analysis tools or re−format them for input into other programs, including visualization packages. If you

1. Introduction 5

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

are convinced you need to compute something on−the−fly as LAMMPS runs, see this section for a discussion
of how you can use the dump and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the
computations are not parallel, so it is often better to leave such analysis to post−processing codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package − see the xmovie tool in this
section. It creates xyz projection views of atomic coordinates and animates them. We find it very useful for
debugging purposes. For high−quality visualization we recommend the following packages:

Raster3d•
RasMol•
VMD•
AtomEye•

Other features that LAMMPS does not yet (and may never) support are discussed in this section.

Finally, these are freely−available molecular dynamics codes, most of them parallel, which may be
well−suited to the problems you want to model. They can also be used in conjunction with LAMMPS to
perform complementary modeling tasks.

CHARMM•
AMBER•
NAMD•
NWCHEM•
DL_POLY•
Tinker•

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological
molecules. CHARMM and AMBER use atom−decomposition (replicated−data) strategies for parallelism;
NAMD and NWCHEM use spatial−decomposition approaches, similar to LAMMPS. Tinker is a serial code.
DL_POLY includes potentials for a variety of biological and non−biological materials; both a replicated−data
and spatial−decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted
code that is distributed free−of− charge, under the terms of the GNU Public License (GPL). This is often
referred to as open−source distribution − see www.gnu.org or www.opensource.org for more details. The
legal text of the GPL is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open−source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open−sourced, meaning
you distribute it under the terms of the GPL.

1. Introduction 6

http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.ks.uiuc.edu/Research/vmd
http://164.107.79.177/Archive/Graphics/A
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open−source code, these are various ways you can contribute to making LAMMPS better.
You can send email on any of these items.

Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your
WWW site.

•

If you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion
for something to clarify or include, send an email.

•

If you find a bug, this section describes how to report it.•
If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if
you like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with
links and attributions back to you.

•

Create a new Makefile.machine that can be added to the src/MAKE directory.•
The tools sub−directory of the LAMMPS distribution has various stand−alone codes for pre− and
post−processing of LAMMPS data. More details are given in this section. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

•

LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

•

The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

•

You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added
to the page. No promises.

•

Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

•

1.5 Acknowledgements and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA,
LDRD, ASCI, and Genomes−to−Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following papers describe the parallel algorithms used in LAMMPS.

S. J. Plimpton, Fast Parallel Algorithms for Short−Range Molecular Dynamics, J Comp Phys, 117, 1−19
(1995).

S. J. Plimpton, R. Pollock, M. Stevens, Particle−Mesh Ewald and rRESPA for Parallel Molecular
Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN (March 1997).

If you use LAMMPS results in your published work, please cite the J Comp Phys reference and include a
pointer to the LAMMPS WWW Site (www.cs.sandia.gov/~sjplimp/lammps.html). A paper describing the
latest version of LAMMPS is in the works; when it appears in print, you can check the LAMMPS WWW Site
for a more current citation.

1. Introduction 7

mailto:sjplimp@sandia.gov
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
mailto:sjplimp@sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

If you send me information about your publication, I'll be pleased to add it to the Publications page of the
LAMMPS WWW Site. Ditto for a picture or movie for the Pictures or Movies pages.

The primary author of LAMMPS is Steve Plimpton at Sandia National Labs. Others have made significant
contributions to the code:

Ewald and
PPPM solvers

Roy Pollock
(LLNL)

rRESPA
Mark Stevens
&Paul Crozier
(Sandia)

NVT/NPT
integrators

Mark Stevens
(Sandia)

class 2 force
fields

Eric Simon
(Cray)

HTFN energy
minimizer

Todd
Plantenga
(Sandia)

msi2lmp tool

Steve Lustig
(Dupont),
Mike Peachey
&John
Carpenter
(Cray)

CHARMM
force fields

Paul Crozier
(Sandia)

2d
Ewald/PPPM

Paul Crozier
(Sandia)

granular force
fields and BC

Leo Silbert
&Gary Grest
(Sandia)

multi−harmonic
dihedral
potential

Mathias Putz
(Sandia)

EAM potentials
Stephen Foiles
(Sandia)

parallel
tempering

Mark Sears
(Sandia)

lmp2cfg and
lmp2traj tools

Ara Kooser,
Jeff
Greathouse,
Andrey
Kalinichev
(Sandia)

FFT support for
SGI SCLS
(Altix)

Jim Shepherd
(Ga Tech)

1. Introduction 8

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp

targeted
molecular
dynamics
(TMD)

Paul Crozier
(Sandia),
Christian
Burisch
(Bochum
Univeristy,
Germany)

force tables for
long−range
Coulombics

Paul Crozier
(Sandia)

radial
distribution
functions

Paul Crozier
&Jeff
Greathouse
(Sandia)

Morse bond
potential

Jeff
Greathouse
(Sandia)

CHARMM
LAMMPS tool

Pieter in't Veld
and Paul
Crozier
(Sandia)

AMBER
LAMMPS tool

Keir Novik
(Univ College
London) and
Vikas
Varshney (U
Akron)

electric field fix
Christina
Payne
(Vanderbilt U)

cylindrical
indenter fix

Ravi Agrawal
(Northwestern
U)

Other CRADA partners involved in the design and testing of LAMMPS were

John Carpenter (Mayo Clinic, formerly at Cray Research)•
Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)•
Steve Lustig (Dupont)•
Jim Belak (LLNL)•

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

2. Getting Started

This section describes how to unpack, make, and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS

2. Getting Started 9

http://www.cs.sandia.gov/~sjplimp/lammps.html

2.3 Running LAMMPS
2.4 Command−line options
2.5 Screen output
2.6 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub−directories:

README text file

LICENSE
the GNU
General Public
License (GPL)

bench
benchmark
problems

doc documentation

examples
simple test
problems

potentials
embedded atom
method (EAM)
potential files

src source files

tools
pre− and
post−processing
tools

2.2 Making LAMMPS

Read this first:

Building LAMMPS can be non−trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, FFT), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a
local expert to help you. Many of the emails I get about build and run problems are not really about LAMMPS
− they are peculiar to the user's system, compilers, libraries, etc. Such questions are better answered by a local
expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a
line of LAMMPS source code), then please send an email. Note that doesn't include linking problems − that's
a question for a local expert!

Also, if you succeed in building LAMMPS on a new kind of machine (which there isn't a similar Makefile for
in the distribution), send it to sjplimp@sandia.gov and we'll include it in future LAMMPS releases.

2. Getting Started 10

mailto:sjplimp@sandia.gov

Building a LAMMPS executable:

The src directory contains the C++ source and header files for LAMMPS. It also contains a top−level
Makefile and a MAKE directory with low−level Makefile.* files for several machines. From within the src
directory, type "make" or "gmake". You should see a list of available choices. If one of those is the machine
and options you want, you can type a command like:

make linux
gmake mac

If you get no errors and an executable like lmp_linux or lmp_mac is produced, you're done; it's your lucky
day. The remainder of this section addressed the following topics: errors that occur when making LAMMPS,
editing a new low−level Makefile.foo, how to make LAMMPS with and without packages, and additional
build tips.

Errors that occur when making LAMMPS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their
names, this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a −f switch with your make command to use Makefile.list
which explicitly lists all the needed files, e.g.

make −f Makefile.list linux
gmake −f Makefile.list mac

(2) Other errors typically occur because the low−level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE directory. Use whatever existing file
is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low−level Makefile.foo:

These are the issues you need to address when editing a low−level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System−specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is
the line you will see if you just type "make".

(2) Set the paths and flags for your C++ compiler, including optimization flags. You can use g++, the
open−source GNU compiler, which is available on all Unix systems. Vendor compilers often produce faster
code. On boxes with Intel CPUs, I use the free Intel icc compiler, which you can download from Intel's
compiler site.

(3) If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform.
Makefile.foo needs to specify where the mpi.h file (−I switch) and the libmpi.a library (−L switch) is found.
On my Linux box, I use Argonne's MPICH 1.2 which can be downloaded from the Argonne MPI site. LAM
MPI should also work. If you are running on a big parallel platform, your system people or the vendor should
have already installed a version of MPI, which will be faster than MPICH or LAM, so find out how to link
against it. If you use MPICH or LAM, you will have to configure and build it for your platform. The MPI
configure script should have compiler options to enable you to use the same compiler you are using for the
LAMMPS build, which can avoid problems that may arise when linking LAMMPS to the MPI library.

2. Getting Started 11

http://www.intel.com/software/products/noncom
http://www.intel.com/software/products/noncom
http://www-unix.mcs.anl.gov/mpi

(4) If you just want LAMMPS to run on a single processor, you can use the STUBS library in place of MPI,
since you don't need an MPI library installed on your system. See the Makefile.serial file for how to specify
the −I and −L switches. You will also need to build the STUBS library for your platform before making
LAMMPS itself. From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking
to LAMMPS. If the build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI−standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long LAMMPS runs.

(5) If you want to use the particle−particle particle−mesh (PPPM) option in LAMMPS for long−range
Coulombics, you must have a 1d FFT library installed on your platform. This is specified by a switch of the
form −DFFT_XXX where XXX = INTEL, DEC, SGI, SCSL, or FFTW. All but the last one are native
vendor−provided libraries. FFTW is a fast, portable library that should work on any platform. You can
download it from www.fftw.org. Use version 2.1.X, not the newer 3.0.X. Building FFTW for my box was as
simple as ./configure; make. Whichever FFT library you have on your platform, you'll need to set the
appropriate −I and −L switches in Makefile.foo.

If you examine fft3d.c and fft3d.h you'll see it's possible to add other vendor FFT libraries via #ifdef
statements in the appropriate places. If you successfully add a new FFT option, like −DFFT_IBM, please send
me an email; I'd like to add it to LAMMPS.

(6) If you don't plan to use PPPM, you don't need an FFT library. Use a −DFFT_NONE switch in the
CCFLAGS setting of Makefile.foo, or exclude the KSPACE package (see below).

(7) There are a few other −D compiler switches you can set as part of CCFLAGS. The read_data command
will read from gzipped files if you compile with −DGZIP. It requires that your Unix have certain include files
available. Using one of the −DPACK_ARRAY, −DPACK_POINTER, and −DPACK_MEMCPY options can
make for faster parallel FFTs (in the PPPM solver) on some platforms. The −DPACK_ARRAY setting is the
default.

(8) The DEPFLAGS setting is how the C++ compiler creates a dependency file for each source file. This
speeds re−compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than −D. GNU g++ works with −D. If your compiler
can't create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.tflop, which uses different rules that do not involve dependency files.

That's it. Once you have a correct Makefile.foo and you have pre−built the MPI and FFT libraries it will use,
all you need to do from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable lmp_foo when the build is complete.

How to make LAMMPS with and without packages:

The source code for LAMMPS is structured as a large set of core files that are always used plus additional
packages, which are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of packages by typing "make
package". The current list of packages is as follows:

2. Getting Started 12

http://www.fftw.org

class2
class 2 force
fields

granular

force fields
and boundary
conditions for
granular
systems

kspace

long−range
Ewald and
particle−mesh
(PPPM)
solvers

molecule
force fields for
molecular
systems

Any or all of these packages can be included or excluded when LAMMPS is built. The default is to include
only the kspace and molecule packages. You may wish to exclude certain packages if you will never run
certain kinds of simulations. This will produce a smaller executable which in some cases will also run a bit
faster.

Packages are included or excluded by typing "make yes−name" or "make no−name", where "name" is the
name of the package. You can also type "make yes−all" or "make no−all" to include/exclude all optional
packages. These commands work by simply moving files back and forth between the main src directory and
sub−directories with the package name, so that the files are not seen when LAMMPS is built. After you have
included or excluded a package, you must re−make LAMMPS.

Additional make options exist to help manage LAMMPS files that exist in both the src directory and in
package sub−directories. Typing "make package−update" will overwrite src files with files from the package
directories if the package has been included. Typing "make package−overwrite" will overwrite files in the
package directories with src files. Typing "make package−check" will list differences between src and
package versions of the same files.

Building LAMMPS as a library:

LAMMPS can be built as a library, which can then be called from another application or a scripting language.
This is done by typing

make −f Makefile.lib foo

where foo is the machine name. This requires that Makefile.foo have a library target (lib) and system−specific
settings for ARCHIVE and ARFLAGS. See Makefile.linux for an example. This make command will create
the file liblmp_foo.a which another application can link to. The library has 3 callable functions:

void lammps_open(int, char **);
void lammps_close();
int lammps_command(char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command−line arguments when LAMMPS is run from the command line. The lammps_close() function is
used to shut down LAMMPS and free all its memory. The lammps_command() function is used to pass a

2. Getting Started 13

string to LAMMPS as if it were an input command read from an input script. See the library.cpp file for more
information about the arguments and return values for these 3 functions.

Additional build tips:

(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own
object sub−dir called Obj_name where it stores the system−specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.o object files created when LAMMPS is built.

(3) Building for a Macintosh.

OS X is BSD Unix, so it already works. See the Makefile.mac file.

(4) Building for MicroSoft Windows.

I've never done this, but LAMMPS is just standard C++ with MPI and FFT calls. You should be able to use
cygwin to build LAMMPS with a Unix−style make. Or you should be able to pull all the source files into
Visual C++ (ugh) or some similar development environment and build it. In the src/MAKE directory are some
Notes from users on how they built LAMMPS under Windows, so you can look at their instructions for tips.

Good luck − I can't help you on this one.

(5) Updating the Makefile.list and Makefile.lib files.

If you add new source files to LAMMPS, the Makefile.list and Makefile.lib files will be out−of−date if you
use them to build LAMMPS as an executable or library as described above. You can re−create these 2
Makefiles so they list all the current source files in the src directory, by typing "make makelist" or "make
makelib" respectively.

2.3 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. lmp_linux < in.file. This means you first
create an input script (e.g. in.file) containing the desired commands. This section describes how input scripts
are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run one of the Lennard−Jones tests on a Linux box, using mpirun to launch a parallel
job:

cd src
make linux
cp lmp_linux ../examples/lj
cd ../examples/lj
mpirun −np 4 lmp_linux <in.lj.nve

2. Getting Started 14

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a
log.lammps file with the same information. Note that this sequence of commands copied the LAMMPS
executable (lmp_linux) to the directory with the input files. If you don't do this, LAMMPS may look for input
files or create output files in the directory where the executable is, rather than where you run it from.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR
message and stop or a WARNING message and continue. See this section for a discussion of the various
kinds of errors LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do
about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should
get identical answers on any number of processors and on any machine. In practice, numerical round−off can
cause slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run
out of memory, you must run on more processors or setup a smaller problem.

2.4 Command−line options

At run time, LAMMPS recognizes several optional command−line switches which may be used in any order.
For example, lmp_ibm might be launched as follows:

mpirun −np 16 lmp_ibm −var f tmp.out −log my.log −screen none <in.alloy

These are the command−line options:

−partition 8x2 4 5 ...

Invoke LAMMPS in multi−partition mode. When LAMMPS is run on P processors and this switch is not
used, LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions,
each with N processors. Arguments of the form N mean a single partition with N processors. The sum of
processors in all partitions must equal P. Thus the command "−partition 8x2 4 5" has 10 partitions and runs on
a total of 25 processors.

The input script specifies what simulation is run on which partition; see the variable and next commands.
Simulations running on different partitions can also communicate with each other; see the temper command.

−in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one−partition
mode. If it is not specified, LAMMPS reads its input script from stdin − e.g. lmp_linux < in.run. This is a
required switch when running LAMMPS in multi−partition mode, since multiple processors cannot all read
from stdin.

−log file

Specify a log file for LAMMPS to write status information to. In one−partition mode, if the switch is not
used, LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi−partition mode, if the switch is not used, a log.lammps file is created with hi−level status information.

2. Getting Started 15

Each partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in
multi−partition mode, the hi−level logfile is named "file" and each partition also logs information to a file.N.
For both one−partition and multi−partition mode, if the specified file is "none", then no log files are created.
Using a log command in the input script will override this setting.

−screen file

Specify a file for LAMMPS to write it's screen information to. In one−partition mode, if the switch is not
used, LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and
you will see no screen output. In multi−partition mode, if the switch is not used, hi−level status information is
written to the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is
specified in multi−partition mode, the hi−level screen dump is named "file" and each partition also writes
screen information to a file.N. For both one−partition and multi−partition mode, if the specified file is "none",
then no screen output is performed.

−var X value

Specify a variable that will be defined for substitution purposes when the input script is read. X should be a
single lower−case character from 'a' to 'z'. The value can be any string. Using this command−line option is
equivalent to putting the line "variable X index value" at the beginning of the input script. See the variable
command for more information.

2.5 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant
actions it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various
initializations and prints the amount of memory (in MBytes per processor) that the simulation requires. It also
prints details of the initial thermodynamic state of the system. During the run itself, thermodynamic
information is printed periodically, every few timesteps. When the run concludes, LAMMPS prints the final
thermodynamic state and a total run time for the simulation. It then appends statistics about the CPU time and
storage requirements for the simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)

Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 354141 ave, 361422 max, 346860 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282
Ave neighs/atom = 353.434
Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

2. Getting Started 16

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair−wise neighbors stored per
processor. The max and min values give the spread of these values across processors with a 10−bin histogram
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair−wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is
given as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list
rebuilding (see the neigh_modify command), then dangerous reneighborings are those that were triggered on
the first timestep atom movement was checked for. If this count is non−zero you may wish to reduce the delay
factor to insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a
rebuild takes place.

2.6 Tips for users of previous LAMMPS versions

LAMMPS 2003 is a complete C++ rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in this section. The F90 and F77 versions (2001 and 99) are also freely
distributed as open−source codes; check the LAMMPS WWW Site for distribution information if you prefer
those versions. The 99 and 2001 versions are no longer under active development; they do not have all the
features of LAMMPS 2003.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in
LAMMPS 2003:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in LAMMPS 2003, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details.
The data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in LAMMPS 2003.

(4) Binary restart files written by LAMMPS 2001 cannot be read by LAMMPS 2003 with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++
writes or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a
text data file. Then edit the data file as necessary before using the LAMMPS 2003 read_data command to read
it in.

(5) There are numerous small numerical changes in LAMMPS 2003 that mean you will not get identical
answers when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory
should be close if you have setup the problem for both codes the same.

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

2. Getting Started 17

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

3. Commands

This section describes how a LAMMPS input script is formatted and what commands are used to define a
LAMMPS simulation.

3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input
script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal
variable, read in a file, or run a simulation. Most commands have default settings, which means you only need
to use the command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules
apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this
sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the
2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is
used for the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must
precede command B in the input script if it is to have the desired effect. For example, the read_data command
initializes the system by setting up the simulation box and assigning atoms to processors. If default values are
not desired, the processors and boundary commands need to be used before read_data to tell LAMMPS how
to map processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This

3. Commands 18

section gives more information on what errors mean. The documentation for each command lists restrictions
on how the command can be used.

3.2 Parsing rules

Each non−blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower−case, as are specified command arguments. Upper case letters may be used for
file names or user−specified ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the line ends with a ""character (with no trailing whitespace), the command is assumed to continue on
the next line. The next line is concatenated to the previous line by removing the ""character and newline. This
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters. If the character following the $ is "a" to "z", the
two−characters sequence (e.g. $x) is replaced with the corresponding variable text. See the variable command
for details.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) An argument with spaces can be enclosed in double quotes so it will be treated as a single argument. See
the dump modify command for an example.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the
LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in this
section, and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:

Initialization1.
Atom definition2.
Settings3.
Run a simulation4.

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run
some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands
need only be used if a non−default value is desired.

(1) Initialization

Set parameters that need to be defined before atoms are created or read−in from a file.

3. Commands 19

http://www.cs.sandia.gov/~sjplimp/lammps.html

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force−field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of
force fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, orient, origin, region, create_box, create_atoms.
The entire set of atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficents are set by these commands (they can also be set in the read−in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: temperature, temp_modify, neighbor,
neigh_modify, group, timestep, reset_timestep, run_style.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command
comes in many flavors.

Output options are set by these commands: thermo, dump, restart.

(4) Run a simulation

A molecular dynamics simulation is run using the run command. A parallel tempering (replica−exchange)
simulation can be run using the temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands and their style options are part of specific LAMMPS packages. All
packages are included in a LAMMPS build by default, but if you excluded a specific package when building
LAMMPS, you cannot use the associated commands or styles. These dependencies are listed as Restrictions
in the command's documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, orient, origin, read_data, read_restart, region, replicate

Force fields:

3. Commands 20

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

dipole, group, mass, neigh_modify, neighbor, reset_timestep, run_style, set, temp_modify, temperature,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Output:

dump, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restart

Actions:

delete_atoms, delete_bonds, displace_atoms, run, temper

Miscellaneous:

cd, clear, echo, include, jump, log, next, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically. The previous section lists the same commands,
grouped by category. Note that some commands and their style options are part of specific LAMMPS
packages. All packages are included in a LAMMPS build by default, but if you excluded a specific package
when building LAMMPS, you cannot use the associated commands or styles. These dependencies are listed as
Restrictions in the command's documentation.

angle_coeff angle_style atom_modify atom_style bond_coeff bond_style

boundary cd clear create_atomscreate_box delete_atoms

delete_bonds dielectric dihedral_coeffdihedral_styledimension dipole

displace_atomsdump dump_modify echo fix fix_modify

group improper_coeffimproper_styleinclude jump kspace_modify

kspace_style lattice log mass neigh_modifyneighbor

newton next orient origin pair_coeff pair_modify

pair_style pair_write processors read_data read_restart region

replicate reset_timesteprestart run run_style set

special_bondstemp_modify temper temperature thermo thermo_modify

thermo_style timestep undump unfix units variable

velocity write_restart
Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next

Section

3. Commands 21

http://www.cs.sandia.gov/~sjplimp/lammps.html

4. How−to discussions

The following sections describe what commands can be used to perform certain kinds of LAMMPS
simulations.

4.1 Restarting a simulation
4.2 2d simulations
4.3 CHARMM and AMBER force fields
4.4 Multiple simulations on different partitions
4.5 Parallel tempering
4.6 Granular models
4.7 TIP3P water model

The example input scripts included in the LAMMPS distribution and highlighted in this section also show
how to setup and run various kinds of problems.

4.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to
disk using the restart command. At a later time, these binary files can be read via a read_restart command in a
new script. Or they can be converted to text data files and read by a read_data command in a new script. This
section discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in
the new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the
original script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re−run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart
file: units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used,

4. How−to discussions 22

since their settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodyanmic data match at
step 50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is
because the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alterate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re−run the last 50 steps:

units lj
atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data
files.

4.2 2d simulations

Use the dimension command to specify a 2d simulation.

Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms − e.g.

create box 1 −10 10 −10 10 −0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z
coordinate so it falls inside the z−boundaries of the box − e.g. 0.0.

4. How−to discussions 23

Use the fix enforce2d command as the last defined fix to insure that the z−components of velocities and forces
are zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes
will be zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.

4.3 CHARMM and AMBER force fields

There are many different ways to compute forces in the CHARMM and AMBER molecular dynamics codes,
only some of which are available as options in LAMMPS. A force field has 2 parts: the formulas that define it
and the coefficients used for a particular system. Here we only discuss formulas implemented in LAMMPS.
Setting coefficients is done in the input data file via the read_data command or in the input script with
commands like pair_coeff or bond_coeff. See this section for additional tools that can use CHARMM or
AMBER to assign force field coefficients and convert their output into LAMMPS intput.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

bond_style harmonic•
angle_style charmm•
dihedral_style charmm•
pair_style lj/charmm/coul/charmm•
pair_style lj/charmm/coul/charmm/implicit•
pair_style lj/charmm/coul/long•

special_bonds charmm•
special_bonds amber•

4.4 Multiple simulations on different partitions

Use the −procs and −in command−line switches to launch LAMMPS on multiple partitions. See the variable,
next, and jump commands for more details about the specific commands that are discussed below.

If you want to repeat a simulation with many different parameter settings, you could use the following input
script. In this example, temperature is the parameter that is varied.

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2 1.25
...
read data.polymer
velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.$t
...
run 100000
next t
jump in.run

The "variable" command defines a set of Lennard−Jones reduced temperatures. The $t temperature variable is
used in the "velocity", "fix", and "dump" commands to specify a particular temperature and store simulation
output in a unique file. The "..." lines stand for other settings you wish to make, which could include $t or

4. How−to discussions 24

http://www.scripps.edu/brooks
http://amber.scripps.edu

other variables you define. As discussed in its documentation, the next command increments the $t variable as
each processor partition finishes its simulation. If the above script is stored in the file "in.run", then the jump
command will restart the script with a new value for the $t variable.

If you want to run a set of independent simulations, you could use this strategy. Assume you have 8
directories (run*), each with it's own data.polymer and in.polymer input files.

Name this script "in.master" and store it in the directory that contains the run* sub−dirs:

variable d index run1 run2 run3 run4 run5 run6 run7 run8
cd $d
jump in.polymer

At the bottom of each in.polymer script put these lines:

cd ..
next d
clear
jump in.master

The clear command will re−initialize LAMMPS so that the partition of processors can run a new simulation.

4.5 Parallel tempering

The temper command can be used to perform a parallel tempering or replica−exchange simulation where
multiple copies of a simulation are run at different temperatures on different sets of processors, and Monte
Carlo temperature swaps are performed between pairs of copies.

Use the −procs and −in command−line switches to launch LAMMPS on multiple partitions.

In your input script, define a set of temperatures, one for each processor partition, using the variable
command:

variable t proc 300.0 310.0 320.0 330.0

Define a fix of style nvt or langevin to control the temperature of each simulation:

fix myfix all nvt $t $t 100.0

Use the temper command in place of a run command to perform a simulation where tempering exchanges will
take place:

temper 100000 100 $t myfix 3847 58382

4.6 Granular models

To run a simulation of a granular model, you will want to use the following commands:

atom_style granular•
fix nve/gran•

4. How−to discussions 25

fix gravity•
thermo_style gran•

Use one of these 3 pair potentials:

pair_style gran/history•
pair_style gran/no_history•
pair_style gran/hertzian•

These commands implement fix options specific to granular systems:

fix freeze•
fix gran/diag•
fix insert•
fix viscous•
fix wall/gran•

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by
using this command:

neigh_modify exclude•

4.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3−site rigid water molecule
with charges and Lennard−Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake
command can be used to hold the two O−H bonds and the H−O−H angle rigid. A bond style of harmonic and
an angle style of harmonic or charmm should also be used. These are the additional parameters (in real units)
to set for O and H atoms and the water molecule to run a TIP3P model:

O charge = −0.834
H charge = 0.417

O mass = 15.9994
H mass = 1.008

LJ epsilon of O = 0.1521
LJ sigma of O = 3.15057
LJ epsilon of H = 0.046
LJ sigma of H = 0.400014

K of O−H bond = 450
r0 of O−H bond = 0.9572

K of H−O−H angle = 55
theta of H−O−H angle = 104.52

4. How−to discussions 26

Note: If the LJ epsilon and sigma for H are set to 0.0, it corresponds to the original 1983 TIP3P model
(Jorgensen).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

5. Example problems

The LAMMPS distribution includes an examples sub−directory with several sample problems. Each problem
is in a sub−directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of
minutes to run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*)
and dump file (dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A
few sample log file outputs on different machines and different numbers of processors are included in the
directories to compare your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of
machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the Tools
section. MPEG versions of most of the xmovie animations are also viewable from the Examples page of the
LAMMPS WWW Site.

These are the sample problems in the examples sub−directories:

flow

Couette and
Poisseuille
flow in a 2d
channel

indent
spherical
indenter into a
2d solid

micelle

self−assembly
of small
lipid−like
molecules into
2d bilayers

obstacle
flow around
two voids in a
2d channel

pour

pouring of
granular
particles into a
3d box, then
chute flow

5. Example problems 27

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

crack
crack
propagation in
a 2d solid

friction

frictional
contact of
spherical
asperities
between 2d
surfaces

melt
rapid melt of
3d LJ system

peptide

dynamics of a
small solvated
peptide chain
(5−mer)

shear

sideways shear
applied to 2d
solid, with and
without a void

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
lmp_linux <in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie −scale dump.indent

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

6. Performance &scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks
page of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the
benchmarks are described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

LJ = atomic fluid, Lennard−Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

1.

Chain = bead−spring polymer melt of 100−mer chains, FENE bonds and LJ pairwise interactions with
a 2^(1/6) sigma cutoff (5 neighbors per atom), NVE integration

2.

EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

3.

Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

4.

6. Performance &scalability 28

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ
cutoff (440 neighbors per atom), particle−particle particle−mesh (PPPM) for long−range Coulombics,
NPT integration

5.

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output
files. Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial
benchmarks (on one processor) or in parallel. In parallel, each benchmark can be run as a fixed−size or
scaled−size problem. For fixed−size benchmarking, the same 32K atom problem is run on various numbers of
processors. For scaled−size benchmarking, the model size is increased with the number of processors. E.g. on
8 processors, a 256K−atom problem is run; on 1024 processors, a 32−million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance
scales roughly linearly with problem size and timesteps, the run time of any problem using the same model
(atom style, force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop
machine (Intel icc compiler under Red Hat Linux), the CPU run−time in seconds/atom/timestep for the 5
problems is

Problem: LJ Chain EAM Chute Rhodopsin

CPU/atom/step:4.55E−6 2.18E−6 9.38E−6 2.18E−6 1.11E−4

Ratio to LJ: 1.0 0.48 2.06 0.48 24.5
The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead−spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively.
The bulk of these cost differences is due to the expense of computing a particular pairwise force field for a
given number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one−processor timings if the parallel
efficiency can be estimated. The communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give fixed−size parallel efficiencies on these
benchmarks above 50% so long as the atoms/processor count is a few 100 or greater − i.e. on 64 to 128
processors. Likewise, scaled−size parallel efficiencies will typically be 80% or greater up to very large
processor counts. The benchmark data on the LAMMPS WWW Site gives specific examples on some
different machines, including a run of 3/4 of a billion LJ atoms on 1500 processors that ran at 85% parallel
efficiency.

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

7. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations.
Additional pre− and post−processing steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their
output to a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were

7. Additional tools 29

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html

contributed by LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub−directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in
that directory. Some of them are larger packages in their own sub−directories with their own Makefiles.

replicate•
restart2data•
data2xmovie•
chain•
micelle2d•
xmovie•
ch2lmp•
msi2lmp•
amber2lammps•
lmp2arc•
lmp2cfg•
lmp2traj•

replicate tool

The file replicate.c takes a LAMMPS data file and replicates it into a larger system. The syntax for running
the tool is

replicate options <infile > outfile

See the top of the replicate.c file for a discussion of the options. This tool is used by some of the LAMMPS
benchmarks for creating larger systems to run scaled−size problems on multiple processors.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for
running the tool is

restart2data restart−file data−file

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since
binary files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted
data file will typically not conform as closely to a previous run as will restarting from a binary restart file.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as it it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

7. Additional tools 30

chain tool

The file chain.f creates a LAMMPS data file containing bead−spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent
atoms can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to
un−overlap it. The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used
to create the system for the chain benchmark.

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses
a text file containing lipid definition parameters as an input. The created molecules and solvent atoms can
strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un−overlap it.
The syntax for running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create
the system for the micelle example.

xmovie tool

The xmovie tool is an X−based visualization package that can read LAMMPS dump files and animate them. It
is in its own sub−directory with the tools directory. You may need to modify its Makefile so that it can find
the appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.file1 dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in
scaled coordinates, so you typically need to use the −scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays
2d projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large
numbers of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure
your simulation is doing what you think it should. The animations on the Examples page of the LAMMPS
WWW site were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

ch2lmp tool

The ch2lmp sub−directory contains tools for converting files back−and−forth between the CHARMM MD
code and LAMMPS.

7. Additional tools 31

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

They are intended to make it easy to use CHARMM as a builder and as a post−processor for LAMMPS.
Using charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent.
Using lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub−directory for more information.

These tools were created by Pieter in't Veld (pjintve@sandia.gov) and Paul Crozier (pscrozi@sandia.gov) at
Sandia.

msi2lmp tool

The msi2lmp sub−directory contains a tool for creating LAMMPS input data files from Accelrys's Insight MD
code (formerly MSI/Biosysm and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec@mayo.edu), but still fields questions about the tool.

This tool may be out−of−date with respect to the current LAMMPS and Insight versions. Since we don't use it
at Sandia, you'll need to experiment with it yourself.

amber2lmp tool

The amber2lmp sub−directory contain two Python scripts for converting files back−and−forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out−of−date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment
with them and make necessary modifications yourself.

lmp2arc tool

The lmp2arc sub−directory contains a tool for converting LAMMPS output files to the format for Accelrys's
Insight MD code (formerly MSI/Biosysm and its Discover MD code). See the README file for more
information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec@mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia
(jagreat@sandia.gov).

lmp2cfg tool

The lmp2cfg sub−directory contains a tool for converting LAMMPS output files into a series of *.cfg files
which can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose@sandia.gov).

7. Additional tools 32

mailto:jec@mayo.edu
mailto:jec@mayo.edu
http://164.107.79.177/Archive/Graphics/A

lmp2traj tool

The lmp2traj sub−directory contains a tool for converting LAMMPS output files into 3 analysis files. One file
can be used to create contour maps of the atom positions over the course of the simulation. The other two files
provide density profiles and dipole moments. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose@sandia.gov).

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

8. Modifying &extending LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In
this section, changes and additions users can make are listed along with some minimal instructions.
Realistically, the best way to add a new feature is to find a similar feature in LAMMPS and look at the
corresponding source and header files to figure out what it does. You will need some knowledge of C++ to be
able to understand the hi−level structure of LAMMPS and its class organization, but functions (class methods)
that do actual computations are written in vanilla C−style code and operate on simple C−style data structures
(vectors and arrays).

The new features described in this section require you to write a new C++ class (except for dump options,
described below). This requires 2 files, one with source code (*.cpp) and a header file (*.h). Their contents are
briefly discussed below. Enabling LAMMPS to invoke the new class is as simple as adding two definition
lines to the style_user.h file, in the same syntax as the existing LAMMPS features are defined in the style.h
file.

The power of C++ and its object−orientation is that usually, all the code and variables needed to define the
new feature are contained in the 2 files you write, and thus shouldn't make the rest of the code more complex
or cause side−effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class
PairFoo that computes pairwise potentials described in the classic 1997 paper by Foo, et. al. If you wish to
invoke those potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

you simply need to put your 2 files in the LAMMPS src directory, add 2 lines to the style_user.h file, and
re−make the code.

The first line added to style_user.h would be

PairStyle(foo,PairFoo)

in the #ifdef PairClass section, where "foo" is the style keyword in the pair_style command, and PairFoo is the
class name in your C++ files.

The 2nd line added to style_user.h would be

#include "pair_foo.h"

7. Additional tools 33

http://www.cs.sandia.gov/~sjplimp/lammps.html

in the #ifdef PairInclude section, where pair_foo.h is the name of your new include file.

When you re−make LAMMPS, your new pairwise potential becomes part of the executable and can be
invoked with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and
processed by your new class.

Note that if you are using Makefile.list instead of Makefile to build LAMMPS, you will need to add the
names of your new .cpp and .h file to Makefile.list.

Here is a list of the kinds of new features that can be added in this way:

Pairwise potentials•
Bond, angle, dihedral, improper potentials•
Dump options•
Thermodynamic output options•
Temperature computation options•
Region geometry options•
Fix options which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

•

Atom options•
New top−level commands•

As illustrated by the pairwise example, these options are referred to in the LAMMPS documentation as the
"style" of a particular command.

The instructions below for each category will list the header file for the parent class that these styles are
sub−classes of. Public variables in that file are ones used and set by the sub−classes which are also used by
the parent class. Sometimes they are also used by the rest of LAMMPS. Virtual functions in the header file
which are set = 0 are ones you must define in your new class to give it the functionality LAMMPS expects.
Virtual functions that are not set to 0 are functions you can optionally define.

Here are some additional guidelines for modifying LAMMPS and adding new functionality:

Think about whether what you want to do would be better as a pre− or post−processing step. Many
computations are more easily and more quickly done that way.

Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of data on
a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

If your new feature reads arguments or writes output, make sure you follow the unit conventions discussed by
the units command.

If you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't used,
send me an email. We might be interested in adding it to the LAMMPS distribution.

Pairwise potentials

All classes that compute pairwise interactions are sub−classes of the Pair class. See the pair.h file for a list of
methods this class defines.

8. Modifying &extending LAMMPS 34

mailto:sjplimp@sandia.gov

Pair_lj_cut.cpp and pair_lj_cut.h are the simplest example of a Pair class. They implement the lj/cut style of
the pair_style command.

Here is a brief description of the class methods in pair.h:

compute

the
workhorse
routine that
computes the
pairwise
interactions

settings

reads the
input script
line with any
arguments
you define

coeff

set
coefficients
for one i,j
type pair

init_one

perform
initialization
for one i,j
type pair

write &read_restart
write/read i,j
pair coeffs to
restart files

write &read_restart_settings

write/read
global
settings to
restart files

single

force and
energy of a
single
pairwise
interaction
between 2
atoms

compute_inner/middle/outer

versions of
compute
used by
rRESPA

The inner/middle/outer routines are optional. Only a few of the pairwise potentials use these in conjunction
with rRESPA as set by the run_style command.

8. Modifying &extending LAMMPS 35

Bond, angle, dihedral, improper potentials

All classes that compute molecular interactions are sub−classes of the Bond, Angle, Dihedral, and Improper
classes. See the bond.h, angle.h, dihedral.h, and improper.h file for a list of methods these classes defines.

Bond_harmonic.cpp and bond_harmonic.h are the simplest example of a Bond class. Ditto for the harmonic
forms of the angle, dihedral, and improper style commands. The bond_harmonic files implement the
harmonic style of the bond_style command.

Here is a brief description of the class methods in bond.h, angle.h, etc:

compute

the
workhorse
routine that
computes
the
molecular
interactions

coeff

set
coefficients
for one bond
type

equilibrium_distance
length of
bond, used
by SHAKE

write &read_restart
writes/reads
coeffs to
restart files

single
force and
energy of a
single bond

Dump options

Unlike the other styles described on this page, new dump features can be added without writing a new class.
The dump command has a custom style that allows you to specify what information should be dumped with
each atom. If the attribute you want to dump is not in the list, or if you define a new atom style with new
attributes (e.g. atoms that store their own energy), here is how to dump it out in a snapshot file, via additions
you make to the dump_custom.cpp and dump_custom.h file.

The dump_custom.cpp file has lines like the following one for FX. Add a new keyword to the list.

#define FX 15

In the dump_custom constructor, add 4 lines that define the attribute name (e.g. "fx"), vnamei, vtypei, and
pack_choicei for your new option.

Add a new pack method to the DumpCustom class that stores your new atom quantity in the dump buffer,
similar to all the other pack_* methods. The name of this new method is what you assigned to pack_choicei.

8. Modifying &extending LAMMPS 36

You can do a modest amount of computation in this routine to write out precisely what you want − e.g. see the
pack_xs routine, which scales the atom's x coordinate.

Add a prototype for your new method to the dump_custom.h file, like the other pack_* methods.

If desired, a dump custom option can also compute more complicated quantities by invoking a fix that
computed quantities at the end of a timestep (should be the same timestep the dump is invoked on). See the
ENERGY, CENTRO, and stress options (SXX, SYY, etc) in dump_custom.cpp for examples.

When you re−make LAMMPS, your new option should now be useable via the dump custom command.

Similar to the other styles in this section, you can also create new dump styles (like atom, velocity, bond) as
new classes, if modifying the dump custom command is not sufficient for your needs. These are sub−classes
of the Dump class. See the dump.h file for a list of methods these classes defines.

Dump_velocity.cpp and dump_velocity.h are the simplest example of a Dump class. They implement the
velocity style of the dump command.

Here is a brief description of the class methods in dump.h:

write_header

writes the
header
section of
each
snapshot

count

counts the
number of
snapshot
lines to be
written out

pack

packs atom
information
into the
dump buffer

write_data

writes out a
buffer in the
dump
format

Thermodynamic output options

All classes that compute and print thermodynamic information to the screen and log file are sub−classes of the
Thermo class. See the thermo.h file for a list of methods these classes defines.

Thermo_one.cpp and thermo_one.h are the simplest example of a Thermo class. They implement the one style
of the thermo command.

Here is a brief description of the class methods in thermo.h:

8. Modifying &extending LAMMPS 37

header

writes the header
to the
thermodynamic
output

compute
computes current
thermodynamics
of the system

Temperature computation options

All classes that compute the temperature of the system are sub−classes of the Temperature class. See the
temperature.h file for a list of methods these classes defines. Temperatures are computed by LAMMPS when
velocities are set, when thermodynamics are computed, and when temperature is controlled by various
thermostats like the fix nvt of fix langevin commands.

Temp_full.cpp and temp_full.h are the simplest example of a Temperature class. They implement the full style
of the temperature command.

Here is a brief description of the class methods in temperature.h:

init
setup the
temperature
computation

compute
compute and
return
temperature

Region geometry options

All classes that define geometric regions are sub−classes of the Region class. See the region.h file for a list of
methods these classes defines. Regions are used elsewhere in LAMMPS to group atoms, delete atoms to
create a void, insert atoms in a specified region, etc.

Region_sphere.cpp and region_sphere.h are the simplest example of a Region class. They implement the
sphere style of the region command.

Here is a brief description of the single class method required:

match

determine
whether a
point is in
the region

8. Modifying &extending LAMMPS 38

Fix options

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
manipulation, and output, is a "fix". This includes time integration (update of velocity and coordinates), force
constraints (SHAKE or walls), and diagnostics (compute a diffusion coefficient). See the fix.h file for a list of
methods these classes defines.

There are dozens of fix options in LAMMPS; choose one as a template that is similar to what you want to
implement. They can be as simple as zeroing out forces (see fix enforce2d which corresponds to the enforce2d
style) or as complicated as applying SHAKE constraints on bonds and angles (see fix shake which
corresponds to the shake style) which involves many extra computations.

Here is a brief description of the class methods in fix.h:

setmask

determines when
the fix is called
during the
timestep

init
initialization
before a run

setup

called
immediately
before the 1st
timestep

initial_integrate
called at very
beginning of
each timestep

pre_exchange

called before
atom exchange
on
re−neighboring
steps

pre_neighbor
called before
neighbor list
build

post_force

called after pair
&molecular
forces are
computed

final_integrate
called at end of
each timestep

end_of_step
called at very
end of timestep

write_restart
dumps fix info to
restart file

restart uses info from
restart file to

8. Modifying &extending LAMMPS 39

re−initialize the
fix

grow_arrays

allocate memory
for atom−based
arrays used by
fix

copy_arrays

copy atom info
when an atom
migrates to a
new processor

memory_usage
report memory
used by fix

pack_exchange
store atom's data
in a buffer

unpack_exchange
retrieve atom's
data from a
buffer

pack_restart
store atom's data
for writing to
restart file

unpack_restart
retrieve atom's
data from a
restart file buffer

size_restart
size of atom's
data

maxsize_restart
max size of
atom's data

initial_integrate_respa
same as
initial_integrate,
but for rRESPA

post_force_respa
same as
post_force, but
for rRESPA

final_integrate_respa
same as
final_integrate,
but for rRESPA

pack_comm

pack a buffer to
communicate a
per−atom
quantity

unpack_comm

unpack a buffer
to communicate
a per−atom
quantity

pack_reverse_comm pack a buffer to
reverse
communicate a

8. Modifying &extending LAMMPS 40

per−atom
quantity

unpack_reverse_comm

unpack a buffer
to reverse
communicate a
per−atom
quantity

Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt,
npt) implement initial_integrate and final_integrate to perform velocity Verlet updates. Fixes that constrain
forces implement post_force. Fixes that perform diagnostics typically implement end_of_step.

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate it with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similary, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish a
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented.

Atom options

All classes that define an atom style are sub−classes of the Atom class. See the atom.h file for a list of
methods these classes defines. The atom style determines what quantities are associated with an atom in a
LAMMPS simulation. If one of the existing atom styles does not define all the arrays you need to store with
an atom, then a new atom class can be created.

Atom_atomic.cpp and atom_atomic.h are the simplest example of an Atom class. They implement the atomic
style of the atom_style command.

Here is a brief description of the class methods in atom.h:

copy

copy info for
one atom to
another atom's
array location

pack_comm

store an atom's
info in a buffer
communicated
every timestep

unpack_comm
retrieve an
atom's info
from the buffer

pack_reverse

store an atom's
info in a buffer
communicating
partial forces

unpack_reverse retrieve an
atom's info

8. Modifying &extending LAMMPS 41

from the buffer

pack_border

store an atom's
info in a buffer
communicated
on neighbor
re−builds

unpack_border
retrieve an
atom's info
from the buffer

pack_exchange

store all an
atom's info to
migrate to
another
processor

unpack_exchange
retrieve an
atom's info
from the buffer

There are also several methods in atom.cpp you will need to augment with information about your new atom
class, following the patterns of the other atom styles. These routines are so similar for all classes, that it was
simpler to just have one master routine for all classes.

constructor

create style
variable
and atom
array ptrs
to NULL

destructor
free
memory for
atom arrays

set_style
set style
variable

check_style

check for
pure style
vs hybrid
style

style2arg

convert
style
variables to
keywords

grow

re−allocate
atom arrays
to longer
lengths

unpack_data
parse atom
lines from
data file

create_one create an
individual

8. Modifying &extending LAMMPS 42

atom of this
style

size_restart

number of
restart
quantities
associated
with proc's
atoms

pack_restart

pack atom
quantities
into a
buffer

unpack_restart

unpack
atom
quantities
from a
buffer

memory_usage

memory
allocated
by atom
arrays

New Top−level Commands

It is possible to add a new command to a LAMMPS input script as opposed to adding a new style to an
existing command (atom_style, pair_style, fix, etc). For example the create_atoms, read_data, velocity, and
run commands are all top−level LAMMPS commands that are listed in the Command section of style.h. When
such a command is encountered in the LAMMPS input script, the topmost level of LAMMPS (lammps.cpp)
simply creates a class with the corresponding name, invokes the "command" method of the class, and passes it
the arguments from the input script. The command method can perform whatever operations it wishes on the
LAMMPS data structures.

Thus to add a new command, you simply need to add a *.cpp and *.h file containing a single class:

command

operations
performed
by the new
command

Of course, the new class can define other methods and variables that it uses internally.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

8. Modifying &extending LAMMPS 43

http://www.cs.sandia.gov/~sjplimp/lammps.html

9. Errors

This section describes the various kinds of errors you can encounter when using LAMMPS.

9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of
processors, this is typically not a bug. In theory you should get identical answers on any number of processors
and on any machine. In practice, numerical round−off can cause slight differences and eventual divergence of
molecular dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the
statistical properties of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different
velocity when the problem on different machines. Obviously, this means the phase space trajectories of the
two simulations will rapidly diverge. See the discussion of the loop option in the velocity command for
details.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup
time; others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course
LAMMPS cannot figure out your physics mistakes, like choosing too big a timestep, specifying invalid force
field coefficients, or putting 2 atoms on top of each other! If you find errors that LAMMPS doesn't catch that
you think it should flag, please send us an email.

If you get an error message about an invalid command in your input script, you can determine what command
is causing the problem by looking in the log.lammps file or using the echo command to see it on the screen.
For a given command, LAMMPS expects certain arguments in a specified order. If you mess this up,
LAMMPS will often flag the error, but it may read a bogus argument and assign a value that is valid, but not
what you wanted. E.g. trying to read the string "abc" as an integer value and assigning the associated variable
a value of 0.

Generally, LAMMPS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not.
If LAMMPS crashes or hangs without spitting out an error message first then it could be a bug (see this
section) or one of the following cases:

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C−style malloc's which will generate an error message if you run
out of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you
could run out of memory just when one of these small requests is made, in which case the code will crash or
hang (in parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and

9. Errors 44

mailto:sjplimp@sandia.gov

numerics that your simulation is computing. If you see wild thermodynamic values or NaN values in your
LAMMPS output, something is wrong with your simulation.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or
two (usually via an environment variable) to enable buffering or boost the sizes of messages that can be
buffered.

9.2 Reporting bugs

If you are confident that you have found a bug in LAMMPS, we'd like to know about it via email.

First, check the "New features and bug fixes" section of the LAMMPS WWW site to see if the bug has
already been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug.

Send an email that describes the problem and any ideas you have as to what is causing it or where in the code
the problem might be. We'll request your input script and data files if necessary.

9.3 Error &warning Messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason
why. If the explanation here is not sufficient, the documentation for the offending command may help.
Grepping the source files for the text of the error message and staring at the source code and comments is also
not a bad idea! Note that sometimes the same message can be printed from multiple places in the code.

Errors:

1−3 bond count is inconsistent
An inconsistency was detected when computing the number of 1−3 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

1−4 bond count is inconsistent
An inconsistency was detected when computing the number of 1−4 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficientss must be set in the data file or by the bond_coeff command before running a
simulation.

All EAM pair coeffs are not set
All EAM pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficientss must be set in the data file or by the dihedral_coeff command before
running a simulation.

All dipole moments are not set

9. Errors 45

mailto:sjplimp@sandia.gov
http://www.cs.sandia.gov/~sjplimp/lammps.html

For atom styles that define dipole moments for each atom type, all moments must be set in the data
file or by the dipole command before running a simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before
running a simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity
command.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

Angle atoms %d %d %d missing on proc %d at step %d
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far
away.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.

Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has
been assigned.

Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.

Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.

Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Angles defined but no angle types
The data file header lists angles but no angle types.

Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have
lost some atoms.

Atom_modify command after simulation box is defined
The atom_modify command cannot be used after a read_data, read_restart, or create_box command.

Atom_modify command before atom_style command
The atom_modify command cannot be used before an atom style has been defined.

Atom style granular must perform 3d simulations
Atom style granular cannot be used with 2d simulations, because the pairwise potentials are
inherently 3d.

Atom style hybrid cannot have hybrid as an argument
Self−explanatory. Check the input script.

Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.

Attempting to rescale a 0.0 temperature

9. Errors 46

Cannot rescale a temperature that is already 0.0.
Bad FENE bond

Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad grid of processors

The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.

Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.

Bad slab parameter
Kspace_modify value for the slab/volume keyword must be >= 2.0.

Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with
table 0 instead.

Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.

Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.

Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atoms %d %d missing on proc %d at step %d
One or more of 2 atoms needed to compute a particular bond are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far
away.

Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.

Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.

Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has
been assigned.

Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.

Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.

Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Bonds defined but no bond types
The data file header lists bonds but no bond types.

Bond style hybrid cannot have hybrid as an argument
Self−explanatory. Check the input script.

Bond style hybrid cannot use same bond style twice
The sub−style arguments of bond_style hybrid cannot be duplicated. Check the input script.

Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.

Boundary command after simulation box is defined

9. Errors 47

The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi
value for all 3 dimensions.

Can only wiggle zcylinder wall in z dim
The Self−explanatory.

Cannot compute PPPM G
LAMMPS failed to compute a valid approximation for the PPPM g_ewald factor that partitions the
computation between real space and k−space.

Cannot compute PPPM X grid spacing
LAMMPS failed to compute a valid PPPM grid spacing in the x dimension.

Cannot compute PPPM Y grid spacing
LAMMPS failed to compute a valid PPPM grid spacing in the y dimension.

Cannot compute PPPM Z grid spacing
LAMMPS failed to compute a valid PPPM grid spacing in the z dimension.

Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.

Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.

Cannot create_box until atom_style is defined
Self−explanatory.

Cannot create vels with loop all for non−contiguous atom IDs
You cannot use the loop all option if you atom IDs do not span 1 to natoms

Cannot find delete_bonds group ID
Group ID used in the delete_bonds command does not exist.

Cannot find set command group ID
Group ID used in the set command does not exist.

Cannot fix nph on a non−periodic dimension
Pressure can only be controlled on a dimension that is periodic.

Cannot fix npt on a non−periodic dimension
Pressure can only be controlled on a dimension that is periodic.

Cannot fix volume/rescale on a non−periodic boundary
Volume can only be rescaled on a dimension that is periodic.

Cannot mix funcfl and setfl EAM files
The pairwise eam force field can only use either a single setfl file or multiple funcfl formatted
potential files, not a mixture of both.

Cannot open EAM potential file %s
The specified EAM potential file cannot be opened. Check that the path and name are correct.

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix com file %s
The output file for the fix com command cannot be opened. Check that the path and name are correct.

Cannot open fix gran/diag file %s
The output file for the fix gran/diag command cannot be opened. Check that the path and name are
correct.

Cannot open fix msd file %s
The output file for the fix msd command cannot be opened. Check that the path and name are correct.

Cannot open fix rdf file %s
The output file for the fix rdf command cannot be opened. Check that the path and name are correct.

Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.

9. Errors 48

Cannot open gzipped file
LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check
that the path and name are correct.

Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name
are correct.

Cannot open restart file %s
The output restart file cannot be opened. Check that the path and name are correct and that disk space
is available.

Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.

Cannot read_data until atom_style is defined
Self−explanatory.

Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.

Cannot replicate 2d simulation in z dimension
The replicate command cannot replicate a 2d simulation in the z dimension.

Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom−based vectors or a restart file was read which
included atom−based vectors for fixes. The replicate command cannot duplicate that information for
new atoms. You should use the replicate command before fixes are applied to the system.

Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.

Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.

Cannot set dipole for this atom style
This atom style does not support dipole settings for each atom type.

Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a
per−atom basis in the data file.

Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle
setting.

Cannot set these values with this atom style
Choice of set style does not match attribute of atom style.

Cannot use delete_bonds with non−molecular system
Your choice of atom style does not have bonds.

Cannot use dump bond with non−molecular system
Your choice of atom style does not have bonds.

Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation;
see the kspace_modify command.

Cannot use fix gravity vector with atom style granular
Self−explanatory.

Cannot use fix rigid with atom style granular
This fix is not yet enabled for this atom style.

Cannot use fix shake with non−molecular system
Your choice of atom style does not have bonds.

Cannot use granular potential with pair hybrid
Granular potentials cannot currently be used in a pair hybrid simulation.

9. Errors 49

Cannot use multiple long−range potentials with pair hybrid
Only one sub−style potential with a long−range component can be used with pair_style hybrid.

Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non−periodic z dimension.

Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, All 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non−periodic z dimension.

Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation;
see the kspace_modify command.

Cannot use region INF when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has been
used.

Cannot zero momentum for less than 2 atoms
Velocity command is being used with momentum−zeroing options on a group with 0 or 1 atoms.

Command−line variable already exists
Cannot use the −var command−line option to define the same variable more than once.

Could not create 3d FFT plan
The FFT setup in pppm failed.

Could not create 3d remap plan
The FFT setup in pppm failed.

Could not find delete_atoms group ID
A group ID used in the delete_atoms command does not exist.

Could not find displace_atoms group ID
A group ID used in the displace_atoms command does not exist.

Cound not find dump_modify ID
A dump ID used in the dump_modify command does not exist.

Could not find dump group ID
A group ID used in the dump command does not exist.

Could not find fix group ID
A group ID used in the fix command does not exist.

Could not find fix rigid group ID
A group ID used in the fix rigid command does not exist.

Could not find fix_modify ID
A fix ID used in the fix_modify command does not exist.

Could not find fix_modify temp ID
A temperature ID used in the fix_modify command does not exist.

Could not find fix spring vector group ID
Group ID used with fix spring command does not exist.

Could not find temp_modify ID
A temperature ID used in the temp_modify command does not exist.

Could not find temperature group ID
A group ID used in the temperature command does not exist.

Could not find thermo_modify temp ID
A temperature ID used in the thermo_modify command does not exist.

Could not find undump ID
A dump ID used in the undump command does not exist.

Could not find unfix ID
A fix ID used in the unfix command does not exist.

Could not find velocity group ID

9. Errors 50

A group ID used in the velocity command does not exist.
Could not find velocity temperature ID

A temperature ID used in the velocity command does not exist.
Could not open dump file

The output file for the dump command cannot be opened. Check that the path and name are correct.
Could not open input script

The input script file named in a command−line argument could not be opened.
Could not open log.lammps

The default LAMMPS log file cannot be opened. Check that the directory you are running in allows
for files to be created.

Could not open logfile
The LAMMPS log file named in a command−line argument cannot be opened. Check that the path
and name are correct.

Could not open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name
are correct.

Could not open new input file %s
The input script file named in an include or jump command could not be opened. Check that the path
and name are correct.

Could not open screen file
The screen file specified as a command−line arguement cannot be opened. Check that the directory
you are running in allows for files to be created.

Could not open universe log file
For a multi−partition run, the master log file cannot be opened. Check that the directory you are
running in allows for files to be created.

Could not open universe screen file
For a multi−partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box command.

Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.

Create_box region must be of type inside
The region used in the create_box command must not be an "outside" region. See the region
command for details.

Create_box region ID does not exist
A region ID used in the create_box command does not exist.

Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.

Delete_atoms overlap not yet implemented
This option is not yet implemented in LAMMPS.

Delete_atoms region ID does not exist
A region ID used in the delete_atoms command does not exist.

Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.

Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.

Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some
atom coordinates being outside a non−periodic simulation box.

Did not find keyword in table file

9. Errors 51

Keyword used in pair_coeff command was not found in table file.
Did not find SHAKE partner info

Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1−2,
1−3, 1−4 weighting list via the special keyword.

Dihedral atoms %d %d %d %d missing on proc %d at step %d
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the dihedral has blown apart and an
atom is too far away.

Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.

Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style
has been assigned.

Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box
command.

Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.

Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.

Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.

Dipole command before simulation box is defined
The dipole command cannot be used before a read_data, read_restart, or create_box command.

Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box
command.

Energy must be computed on tempering swap steps
You need to use the thermo command to insure that thermodynamics (including energy) in computed
on the timesteps that tempering swaps are attempted.

Failed to allocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.

Fix insert region ID does not exist
A region ID used in the fix insert command does not exist.

Fix langevin period must be > 0.0

9. Errors 52

The time window for temperature relaxation must be > 0
Fix nph periods must be > 0.0

The time window for pressure relaxation must be > 0
Fix npt periods must be > 0.0

The time window for temperature or pressure relaxation must be > 0
Fix nvt period must be > 0.0

The time window for temperature relaxation must be > 0
Fix rdf requires a pair style be defined

Cannot use the rdf fix unless a pair style with a cutoff has been defined.
Fix tmd must come after integration fixes

Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt).
See the fix tmd documentation for details.

Fix wall/gran can only be used with granular pair style
Self−explanatory.

Granular pair styles do not use pair_coeff settings
The pair_coeff command cannot be used with granular force fields.

Gravity must point in −z to use with fix insert
The fix insert command assumes the theta angle for gravity is 180.0.

Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.

Group ID does not exist
A group ID used in the group command does not exist.

Group region ID does not exist
A region ID used in the group command does not exist.

Illegal $ variable
The character following a $ in the input script is not between "a" and "z".

Illegal angle style
The choice of angle style is unknown.

Illegal angle type index for SHAKE
Self−explanatory.

Illegal angle_style command
Self−explanatory. Check the input script.

Illegal atom mass for SHAKE
Mass specified in fix shake command must be > 0.0.

Illegal atom_modify command
Self−explanatory. Check the input script.

Illegal atom style
The choice of atom style is unknown.

Illegal atom_style command
Self−explanatory. Check the input script.

Illegal atom type in neighbor exclusion list
Atom types specified in neigh_modify command must be from 1−N, where N is the number of atom
types.

Illegal atom type index for SHAKE
Self−explanatory. Check the fix shake command in the input script.

Illegal atom types in fix rdf command
Atom types must range from 1 to Ntypes inclusive.

Illegal atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.

Illegal bond style
The choice of bond style is unknown.

9. Errors 53

Illegal bond type index for SHAKE
Self−explanatory. Check the fix shake command in the input script.

Illegal bond_style command
Self−explanatory. Check the input script.

Illegal boundary command
Self−explanatory. Check the input script.

Illegal cd command
Self−explanatory. Check the input script.

Illegal clear command
Self−explanatory. Check the input script.

Illegal coeffs for this angle style
Cannot set class 2 coeffs in data file for this angle style.

Illegal coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.

Illegal coeffs for this improper style
Cannot set class 2 coeffs in data file for this improper style.

Illegal command−line argument
One or more command−line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.

Illegal create_atoms command
Self−explanatory. Check the input script.

Illegal create_box command
Self−explanatory. Check the input script.

Illegal cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.

Illegal data file section: Angle Coeffs
Atom style does not allow angles.

Illegal data file section: AngleAngle Coeffs
Atom style does not allow impropers.

Illegal data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.

Illegal data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.

Illegal data file section: Angles
Atom style does not allow angles.

Illegal data file section: Bond Coeffs
Atom style does not allow bonds.

Illegal data file section: BondAngle Coeffs
Atom style does not allow angles.

Illegal data file section: BondBond Coeffs
Atom style does not allow angles.

Illegal data file section: BondBond13 Coeffs
Atom style does not allow dihedrals.

Illegal data file section: Bonds
Atom style does not allow bonds.

Illegal data file section: Dihedral Coeffs
Atom style does not allow dihedrals.

Illegal data file section: Dihedrals
Atom style does not allow dihedrals.

Illegal data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.

9. Errors 54

Illegal data file section: Improper Coeffs
Atom style does not allow impropers.

Illegal data file section: Impropers
Atom style does not allow impropers.

Illegal data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.

Illegal delete_atoms command
Self−explanatory. Check the input script.

Illegal delete_atoms group command
Self−explanatory. Check the input script.

Illegal delete_atoms region command
Self−explanatory. Check the input script.

Illegal delete_bonds command
Self−explanatory. Check the input script.

Illegal dielectric command
Self−explanatory. Check the input script.

Illegal dihedral style
The choice of dihedral style is unknown.

Illegal dihedral_style command
Self−explanatory. Check the input script.

Illegal dimension command
Self−explanatory. Check the input script.

Illegal dipole command
Self−explanatory. Check the input script.

Illegal displace_atoms command
Self−explanatory. Check the input script.

Illegal displace_atoms ramp command
Self−explanatory. Check the input script.

Illegal dump command
Self−explanatory. Check the input script.

Illegal dump atom command
Self−explanatory. Check the input script.

Illegal dump bond command
Self−explanatory. Check the input script.

Illegal dump velocity command
Self−explanatory. Check the input script.

Illegal dump frequency
Dumps frequency must be 1 or greater.

Illegal dump style
The choice of dump style is unknown.

Illegal dump_modify command
Self−explanatory. Check the input script.

Illegal echo command
Self−explanatory. Check the input script.

Illegal fix addforce command
Self−explanatory. Check the input script.

Illegal fix aveforce command
Self−explanatory. Check the input script.

Illegal fix com command
Self−explanatory. Check the input script.

Illegal fix command

9. Errors 55

Self−explanatory. Check the input script.
Illegal fix drag command

Self−explanatory. Check the input script.
Illegal fix efield command

Self−explanatory. Check the input script.
Illegal fix enforce2d command

Self−explanatory. Check the input script.
Illegal fix freeze command

Self−explanatory. Check the input script.
Illegal fix gran/diag command

Self−explanatory. Check the input script.
Illegal fix gravity command

Self−explanatory. Check the input script.
Illegal fix indent command

Self−explanatory. Check the input script.
Illegal fix insert command

Self−explanatory. Check the input script.
Illegal fix langevin command

Self−explanatory. Check the input script.
Illegal fix lineforce command

Self−explanatory. Check the input script.
Illegal fix msd command

Self−explanatory. Check the input script.
Illegal fix nph command

Self−explanatory. Check the input script.
Illegal fix npt command

Self−explanatory. Check the input script.
Illegal fix nve command

Self−explanatory. Check the input script.
Illegal fix nve/gran command

Self−explanatory. Check the input script.
Illegal fix nvt command

Self−explanatory. Check the input script.
Illegal fix planeforce command

Self−explanatory. Check the input script.
Illegal fix rdf command

Self−explanatory. Check the input script.
Illegal fix rigid command

Self−explanatory. Check the input script.
Illegal fix setforce command

Self−explanatory. Check the input script.
Illegal fix shake command

Self−explanatory. Check the input script.
Illegal fix spring command

Self−explanatory. Check the input script.
Illegal fix style

The choice of fix style is unknown.
Illegal fix temp/rescale command

Self−explanatory. Check the input script.
Illegal fix tmd command

Self−explanatory. Check the input script.

9. Errors 56

Illegal fix viscous command
Self−explanatory. Check the input script.

Illegal fix volume/rescale command
Self−explanatory. Check the input script.

Illegal fix wall/gran command
Self−explanatory. Check the input script.

Illegal fix wall/lj93 command
Self−explanatory. Check the input script.

Illegal fix wiggle command
Self−explanatory. Check the input script.

Illegal fix_modify command
Self−explanatory. Check the input script.

Illegal group command
Self−explanatory. Check the input script.

Illegal group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.

Illegal improper style
The choice of improper style is unknown.

Illegal improper_style command
Self−explanatory. Check the input script.

Illegal include command
Self−explanatory. Check the input script.

Illegal jump command
Self−explanatory. Check the input script.

Illegal kspace style
The choice of kspace style is unknown.

Illegal kspace_modify command
Self−explanatory. Check the input script.

Illegal kspace_style ewald command
Self−explanatory. Check the input script.

Illegal kspace_style pppm command
Self−explanatory. Check the input script.

Illegal lattice command
Self−explanatory. Check the input script.

Illegal log command
Self−explanatory. Check the input script.

Illegal mass command
Self−explanatory. Check the input script.

Illegal neigh_modify command
Self−explanatory. Check the input script.

Illegal neighbor command
Self−explanatory. Check the input script.

Illegal newton command
Self−explanatory. Check the input script.

Illegal next command
Self−explanatory. Check the input script.

Illegal order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds
cannot be compute less frequently than angles, pairwise forces cannot be computed less frequently
than kspace, etc.

Illegal orient command

9. Errors 57

Self−explanatory. Check the input script.
Illegal origin command

Self−explanatory. Check the input script.
Illegal pair style

The choice of pair style is unknown.
Illegal pair_modify command

Self−explanatory. Check the input script.
Illegal pair_style command

Self−explanatory. Check the input script.
Illegal pair_write command

Self−explanatory. Check the input script.
Illegal processors command

Self−explanatory. Check the input script.
Illegal random number seed in set command

Random number seed must be > 0.
Illegal read_data command

Self−explanatory. Check the input script.
Illegal read_restart command

Self−explanatory. Check the input script.
Illegal region command

Self−explanatory. Check the input script.
Illegal region cylinder command

Self−explanatory. Check the input script.
Illegal region style

The choice of region style is unknown.
Illegal replicate command

Self−explanatory. Check the input script.
Illegal reset_timestep command

Self−explanatory. Check the input script.
Illegal restart command

Self−explanatory. Check the input script.
Illegal run command

Self−explanatory. Check the input script.
Illegal run style

The choice of run style is unknown.
Illegal run_style command

Self−explanatory. Check the input script.
Illegal run_style respa command

Self−explanatory. Check the input script.
Illegal set command

Self−explanatory. Check the input script.
Illegal special_bonds command

Self−explanatory. Check the input script.
Illegal style in pair_write command

Self−explanatory. Check the input script.
Illegal temp_modify command

Self−explanatory. Check the input script.
Illegal temper command

Self−explanatory. Check the input script.
Illegal temper command

Self−explanatory. Check the input script.

9. Errors 58

Illegal temperature command
Self−explanatory. Check the input script.

Illegal temperature ramp command
Self−explanatory. Check the input script.

Illegal temperature style
The choice of temperature style is unknown.

Illegal temperature_modify command
Self−explanatory. Check the input script.

Illegal thermo command
Self−explanatory. Check the input script.

Illegal thermo style
The choice of thermo style is unknown.

Illegal thermo_modify command
Self−explanatory. Check the input script.

Illegal thermo_style command
Self−explanatory. Check the input script.

Illegal timestep command
Self−explanatory. Check the input script.

Illegal type for dipole set
Dipole command must set a type from 1−N where N is the number of atom types.

Illegal type for mass set
Mass command must set a type from 1−N where N is the number of atom types.

Illegal type in set command
Type used in set command must be from 1−N where N is the number of atom types (bond types,
angle types, etc).

Illegal undump command
Self−explanatory. Check the input script.

Illegal unfix command
Self−explanatory. Check the input script.

Illegal units command
Self−explanatory. Check the input script.

Illegal variable command
Self−explanatory. Check the input script.

Illegal variable in command−line argument
Command−line arg −var must set a variable from "a" to "z".

Illegal variable in next command
Next command in input script must set variables from "a" to "z".

Illegal variable in variable command
Variable command in input script must set a variable from "a" to "z".

Illegal vector in dump custom command
Atom vector specified in dump custom command is not recognized.

Illegal velocity command
Self−explanatory. Check the input script.

Illegal velocity command
Self−explanatory. Check the input script.

Illegal velocity ramp command
Self−explanatory. Check the input script.

Illegal write_restart command
Self−explanatory. Check the input script.

Improper atoms %d %d %d %d missing on proc %d at step %d

9. Errors 59

One or more of 4 atoms needed to compute a particular improper are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the improper has blown apart and an
atom is too far away.

Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.

Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style
has been assigned.

Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box
command.

Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.

Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.

Impropers defined but no improper types
The data file header lists improper but no improper types.

Inconsistent dipole settings for some atoms
Dipole moment must be 0 for non−dipole type atoms. Dipole moment must be set for dipole type
atoms.

Incorrect args for angle coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for atom style hybrid
Self−explanatory. Check the input script.

Incorrect args for bond coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for dihedral coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for improper coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for pair coefficients
Self−explanatory. Check the input script or data file.

Incorrect args in displace_atoms options
Self−explanatory. Check the input script.

Incorrect args in dump_modify command
Self−explanatory. Check the input script.

Incorrect args in fix indent options
Self−explanatory. Check the input script.

Incorrect args in fix insert options
Self−explanatory. Check the input script.

Incorrect args in fix_modify command
Self−explanatory. Check the input script.

Incorrect args in kspace_modify command
Self−explanatory. Check the input script.

9. Errors 60

Incorrect args in neigh_modify command
Self−explanatory. Check the input script.

Incorrect args in pair_coeff command
Self−explanatory. Check the input script or data file.

Incorrect args in pair_style command
Self−explanatory. Check the input script.

Incorrect args in region options
Self−explanatory. Check the input script.

Incorrect args in temp_modify command
Self−explanatory. Check the input script.

Incorrect args in temperature options
Self−explanatory. Check the input script.

Incorrect args in thermo_modify command
Self−explanatory. Check the input script.

Incorrect args in velocity options
Self−explanatory. Check the input script.

Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.

Incorrect boundaries with slab Ewald
Must have periodic x,y dimensions and non−periodic z dimension to use 2d slab option with Ewald.

Incorrect boundaries with slab PPPM
Must have periodic x,y dimensions and non−periodic z dimension to use 2d slab option with PPPM.

Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.

Insertion region extends outside simulation box
Region specified with fix insert command extends outside the global simulation box.

Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.

Invalid flag in header of restart file
Value read from beginning of restart file is not recognized.

Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.

Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read−in pair table.

Invalid pair table length
Length of read−in pair table is invalid
Value read from beginning of restart file is not recognized.

KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.

KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long−range Coulombic component be selected.

Lattice style imcompatible with dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.

Lost atoms via displacement: original %.15g current %.15g
Moving atoms via the displace_atoms command lost one or more atoms.

Lost atoms: original %.15g current %.15g
A thermodynamic computation has detected lost atoms.

Marsaglia RNG cannot use 0 seed
The random number generator use for the fix langevin command cannot use 0 as an initial seed.

Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.

9. Errors 61

More than one freeze fix
You can only define one freeze fix.

More than one shake fix
You can only define one SHAKE fix.

Must define angle_style before Angle Coeffs
You must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondAngle Coeffs
You must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondBond Coeffs
You must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define bond_style before Bond Coeffs
You must use a bond_style command before reading a data file that defines Bond Coeffs.

Must define dihedral_style before AngleAngleTorsion Coeffs
You must use a dihedral_style command before reading a data file that defines AngleAngleTorsion
Coeffs.

Must define dihedral_style before AngleTorsion Coeffs
You must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.

Must define dihedral_style before BondBond13 Coeffs
You must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.

Must define dihedral_style before Dihedral Coeffs
You must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.

Must define dihedral_style before EndBondTorsion Coeffs
You must use a dihedral_style command before reading a data file that defines EndBondTorsion
Coeffs.

Must define dihedral_style before MiddleBondTorsion Coeffs
You must use a dihedral_style command before reading a data file that defines MiddleBondTorsion
Coeffs.

Must define improper_style before AngleAngle Coeffs
You must use an improper_style command before reading a data file that defines AngleAngle Coeffs.

Must define improper_style before Improper Coeffs
You must use an improper_style command before reading a data file that defines Improper Coeffs.

Must define pair_style before Pair Coeffs
You must use a pair_style command before reading a data file that defines Pair Coeffs.

Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the −partition command−line
option.

Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.

Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.

Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.

Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.

Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.

Must set both respa inner and outer
Cannot use just the inner or outer option with repsa without using the other.

Must specify a region in fix insert
Self−explanatory.

Must use −in switch with multiple partitions

9. Errors 62

A multi−partition simulation cannot read the input script from stdin. The −in command−line option
must be used to specify a file.

Must use a block or cylinder region with fix insert
Self−explanatory.

Must use a molecular atom style with fix rigid molecule
Self−explanatory.

Must use molecular atom style with neigh_modify exclude molecule
Self−explanatory.

Must use a z−axis cylinder with fix insert
The axis of the cylinder region used with the fix insert command must be oriented along the z
dimension.

Must use atom style granular with lj units
Self−explanatory.

Must use atom style granular with pair style granular
Self−explanatory.

Must use atom style granular with thermo style gran
Self−explanatory.

Must use charged atom style with fix efield
The atom style being used does not allow atoms to have assigned charges. Hence it will not work with
this fix which generates a force due to an E−field acting on charge.

Must use charged atom style with this pair style
The atom style being used does not allow atoms to have assigned charges. Hence it will not work with
this choice of pair style.

Must use fix freeze with atom style granular
Self−explanatory.

Must use fix gran/diag with atom style granular
Self−explanatory.

Must use fix gran/diag with granular pair style
Self−explanatory.

Must use fix gravity chute with atom style granular
Self−explanatory.

Must use fix gravity spherical with atom style granular
Self−explanatory.

Must use fix gravity gradient with atom style granular
Self−explanatory.

Must use fix gravity with fix insert
Insertion of granular particles must be done under the influence of gravity.

Must use fix insert with atom style granular
Self−explanatory.

Must use fix nve/gran with atom style granular
Self−explanatory.

Must use fix wall/gran with atom style granular
Self−explanatory.

Must use region with side = in with fix insert
Self−explanatory.

Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be included,
but they were not present.

Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay
setting is non−zero, then it must be a multiple of the every setting.

9. Errors 63

Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the
neighbor page size and the max number of neighbors allowed for one atom.

Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart,
or create_box command.

Next command for multiple partitions not yet implemented
This option is not yet implemented in LAMMPS.

Next command has proc variable
The variable specified by the next command must be of index type.

No angles allowed with this atom style
Self−explanatory. Check data file.

No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.

No atoms to compute diffusion for
The fix msd command has no atoms to compute on.

No bonds allowed with this atom style
Self−explanatory. Check data file.

No dihedrals allowed with this atom style
Self−explanatory. Check data file.

No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.

No impropers allowed with this atom style
Self−explanatory. Check data file.

No rigid bodies defined by fix rigid
Self−explanatory.

Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.

Non−orthogonal lattice vectors
Self−explanatory.

One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.

Orientation vectors are not right−handed
The 3 vectors defined by the orient command must form a right−handed coordinate system.

Out of range atoms − cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is usually because an atom has moved to far in a single timestep.

Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.

Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.

Pair table parameters did not set N
List of pair table parameters must include N setting.

PPPM order cannot be greater than %d
Self−explanatory.

PPPM stencil extends too far, reduce PPPM order
The grid points that atom charge are mapped to cannot extend further than one neighbor processor
away. Reducing the PPPM order via the kspace_modify command will reduce the stencil distance.

Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.

Pair cutoff < Respa interior cutoff

9. Errors 64

One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair style hybrid cannot have hybrid as an argument

Self−explanatory. Check the input script.
Pair style hybrid cannot use same pair style twice

The sub−style arguments of pair_style hybrid cannot be duplicated. Check the input script.
Pair inner cutoff < Respa interior cutoff

One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff

The specified cutoffs for the pair style are inconsistent.
Pair style is incompatible with DihedralCharmm

When using a dihedral style charmm, a pair style with a CHARMM component must also be selected,
so that 1−4 pairwise coefficients are specified.

Pair style is incompatible with KSpace style
If a pair style with a long−range Coulombic componenet is selected, then a kspace style must also be
used.

Pair table cutoffs must all be equal to use with KSpace
When using pair style table with a long−range KSpace solver, the cutoffs for all atom type pairs must
all be the same, since the long−range solver starts at that cutoff.

Pair_coeff command before pair_style is defined
Self−explanatory.

Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.

Pair_modify command before pair_style is defined
Self−explanatory.

Pair_write command before pair_style is defined
Self−explanatory.

Parameters of this fix cannot be modified
The fix_modify command can only be used to modify fixes that allow for certain options to be set.

Potential with shear history requires newton pair off
Granular potentials that include shear history effects can only be run with a newton setting where
pairwise newton is "off".

Proc grid in z != 1 for 2d simulation
There cannot be more than 1 processor in the z dimension of a 2d simulation.

Proc variable count doesn't match # of partitions
A proc−style variable must specify a number of values equal to the number of processor partitions.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.

Quaternion creation numeric error
A numeric error occurred in the creation of a rigid body by the fix rigid command.

Quotes in a single arg
A single word should not be quoted in the input script; only a set of words with intervening spaces
should be quoted.

R0 < 0 for fix spring command
Equilibrium spring length is invalid.

Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.

Replacing a fix, but new style != old style

9. Errors 65

A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is
assumed you with to reset a fix's parameters. This error may mean you are mistakenly re−using a fix
ID when you do not intend to.

Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.

Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely
due to some atom coordinates being outside a non−periodic simulation box.

Requested atom types in EAM setfl file do not exist
Atom type specified in pair_style eam command does not match number of types in setfl potential
file.

Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.

Respa inner/middle/outer used with illegal pair style
Only a few pair potentials support the use of respa inner, middle, outer options.

Respa levels must be >= 1
Self−explanatory.

Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.

Respa not allowed with atom style granular
Respa cannot be used with the granular atom style.

Reuse of dump ID
A dump ID cannot be used twice.

Reuse of region ID
A region ID cannot be used twice.

Reuse of temperature ID
A temperature ID cannot be used twice.

Rigid fix must come before NPT/NPH fix
NPT fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.

Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.

Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.

SHAKE angles have different bond types
All 3−atom angle−constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.

SHAKE cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.

SHAKE clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3
other atoms bonded to it.

SHAKE determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.

SHAKE fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the
pressure virial is incorrect.

Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.

Set command with no atoms existing

9. Errors 66

No atoms are yet defined so the set command cannot be used.
Shake atoms %d %d %d %d missing on proc %d at step %d

The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d %d missing on proc %d at step %d
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d missing on proc %d at step %d
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Substitution for undefined variable
The variable specified with a $ symbol in an input script command has not been previously defined
with a variable command.

Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.

Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.

Tempering fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).

Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.

TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.

Too big a problem to run with a molecular atom style
Cannot run a problem with > 2^31 atoms with molecular attributes.

Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too large an atom type in create_atoms command
The atoms to be created by the create_atoms command must have a valid type.

Too many atoms in data file
A data file cannot contain more than 2^31 atoms.

Too many atoms to use delete atoms command
Cannot use delete_atoms command if number of atoms is greater than 2^31.

Too many atoms to use velocity create with loop all
Cannot use velocity create command with loop all setting if number of atoms is greater than 2^31.
Switch to local or geom setting.

Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.

Too many masses for SHAKE
The fix shake command cannot list more masses than there are atom types.

Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2^N
size table.

9. Errors 67

Too many touching neighbors − boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re−built.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.

Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.

Unknown atom style in restart file
The atom style stored in the restart file is not recognized by LAMMPS.

Unknown command: %s
The command is not known to LAMMPS. Check the input script.

Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.

Unknown section in data file: %s
The keyword for a section of the data file is not recognized by LAMMPS.

Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.

Use of displace_atoms with undefined lattice
Must use lattice command with displace_atoms command if units option is set to lattice.

Use of fix indent with undefined lattice
The lattice command must be used to define a lattice before using the fix indent command.

Use of region with undefined lattice
If scale = lattice (the default) for the region command, then a lattice must first be defined via the
lattice command.

Use of temperature ramp with undefined lattice
If scale = lattice (the default) for the temperature ramp command, then a lattice must first be defined
via the lattice command.

Use of velocity with undefined lattice
If scale = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first
be defined via the lattice command.

Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.

Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.

Velocity ramp in z for a 2d problem
Self−explanatory.

Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.

Warnings:

FENE bond too long: %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

FENE bond too long: %d %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

Group for fix_modify temp != fix group

9. Errors 68

The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

Less insertions than requested
Less atom insertions occurred on this timestep due to the fix insert command than were scheduled.
This is probably because there were too many overlaps detected.

Lost atoms: original %.15g current %.15g
A thermodynamic computation has detected lost atoms.

Mismatch between velocity and temperature groups
The temperature computation used by the velocity command will not be on the same group of atoms
that velocities are being set for. This is probably not what you want.

More than one dump custom with a centro attribute
Each dump custom command that uses a per−atom centro attribute will cause a full neighbor list to be
built and looped over. Thus it may be inefficient to use this attribute in multiple dump custom
commands.

More than one dump custom with a stress attribute
Each dump custom command that uses a per−atom stress tensor attribute will cause the neighbor list
to be looped over and inter−processor communication to be performed. Thus it may be inefficient to
use these attributes in multiple dump custom commands.

More than one dump custom with an energy attribute
Each dump custom command that uses a per−atom energy attribute will cause the neighbor list to be
looped over and inter−processor communication to be performed. Thus it may be inefficient to use
this attribute in multiple dump custom commands.

More than one msd fix
This will be computationally inefficient.

More than one rigid fix
This will be computationally inefficient.

No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.

One or more respa levels compute no forces
This is computationally inefficient.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you
are specifying does not match the old group.

Replicating in a non−periodic dimension
The parameters for a replicate command will cause a non−periodic dimension to be replicated; this
may cause unwanted behavior.

Resetting angle_style to restart file value
The angle style defined in the LAMMPS input script does not match that of the restart file.

Resetting bond_style to restart file value
The bond style defined in the LAMMPS input script does not match that of the restart file.

Resetting boundary settings to restart file values
The boundary settings defined in the LAMMPS input script do not match that of the restart file.

Resetting dihedral_style to restart file value
The dihedral style defined in the LAMMPS input script does not match that of the restart file.

Resetting dimension to restart file value
The dimension value defined in the LAMMPS input script does not match that of the restart file.

Resetting improper_style to restart file value
The improper style defined in the LAMMPS input script does not match that of the restart file.

Resetting newton bond to restart file value

9. Errors 69

The value of the newton setting for bonds defined in the LAMMPS input script does not match that of
the restart file.

Resetting pair_style to restart file value
The pair style defined in the LAMMPS input script does not match that of the restart file.

Resetting unit_style to restart file value
The unit style defined in the LAMMPS input script does not match that of the restart file.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of
processors. Due to round−off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of
processors. Due to round−off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different newton pair setting
The restart file was written out by a LAMMPS simulation running with a different value of the
newton pair setting. The new simulation will use the value from the input script.

Restart file version does not match LAMMPS version
The version of LAMMPS that wrote the restart file does not match the version of LAMMPS that is
reading the restart file. Generally this shouldn't be a problem, since restart file formats won't change
very often if at all. But if they do, the code will probably crash trying to read the file. Versions of
LAMMPS are specified by a date.

SHAKE determinant < 0.0
The determinant of the quadratic euqation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for Ewald or PPPM.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for NPH pressure is not for group all
User−assigned temperature to NPH fix does not compute temperature for all atoms. Since NPH
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPH could be inaccurate.

Temperature for NPT pressure is not for group all
User−assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPT could be inaccurate.

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next
Section

10. Future and history

This section lists features we are planning to add to LAMMPS, features of previous versions of LAMMPS,
and features of other parallel molecular dynamics codes I've distributed.

10.1 Coming attractions
10.2 Past versions

10. Future and history 70

http://www.cs.sandia.gov/~sjplimp/lammps.html

10.1 Coming attractions

The current version of LAMMPS incorporates many features from previous parallel MD codes I developed.
These include earlier versions of LAMMPS itself, Warp and ParaDyn for metals, and GranFlow for granular
materials.

These are features in those codes that haven't yet made it into the current LAMMPS:

energy minimizers (conjugate gradient and Hessian−free truncated Newton)•
Monte Carlo bond−swapping for polymers•
torsional shear boundary conditions and temperature calculation•
deletion of created atoms that overlap•

These are additional features we'd like to eventually add to LAMMPS. Some are being worked on; some
haven't been implemented because of lack of time or interest; others are just a lot of work!

threshhold options for dumps•
bond breaking and creation potentials•
point dipole force fields•
3−body force fields for materials like Si or silica•
modified EAM (MEAM) potentials for metals•
dissipative particle dynamics (DPD) potentials and integrators•
Brownian dynamics•
pressure and energy tail corrections for pairwise interactions•
Parinello−Rahman non−rectilinear simulation box•

10.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research &development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). Soon after the CRADA ended, a final F77 version of the code, LAMMPS 99, was released. As
development of LAMMPS continued at Sandia, the memory management in the code was converted to F90; a
final F90 version was released as LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released in 2004. It includes many new
features, including features from other parallel molecular dynamics codes written at Sandia, namely ParaDyn,
Warp, and GranFlow. ParaDyn is a parallel implementation of the popular serial DYNAMO code developed
by Stephen Foiles and Murray Daw for their embedded atom method (EAM) metal potentials. ParaDyn uses
atom− and force−decomposition algorithms to run in parallel. Warp is also a parallel implementation of the
EAM potentials designed for large problems, with boundary conditions specific to shearing solids in varying
geometries. GranFlow is a granular materials code with potentials and boundary conditions peculiar to
granular systems. All of these codes (except ParaDyn) use spatial−decomposition techniques for their
parallelism.

These older codes are available for download from the LAMMPS WWW site, except for Warp &GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001

F90 + MPI•
dynamic memory•

10. Future and history 71

http://www.cs.sandia.gov/~sjplimp/lammps.html

spatial−decomposition parallelism•
NVE, NVT, NPT, NPH, rRESPA integrators•
LJ and Coulombic pairwise force fields•
all−atom, united−atom, bead−spring polymer force fields•
CHARMM−compatible force fields•
class 2 force fields•
3d/2d Ewald &PPPM•
various force and temperature constraints•
SHAKE•
Hessian−free truncated−Newton minimizer•
user−defined diagnostics•

LAMMPS 99

F77 + MPI•
static memory allocation•
spatial−decomposition parallelism•
most of the LAMMPS 2001 features with a few exceptions•
no 2d Ewald &PPPM•
molecular force fields are missing a few CHARMM terms•
no SHAKE•

Warp

F90 + MPI•
spatial−decomposition parallelism•
embedded atom method (EAM) metal potentials + LJ•
lattice and grain−boundary atom creation•
NVE, NVT integrators•
boundary conditions for applying shear stresses•
temperature controls for actively sheared systems•
per−atom energy and centro−symmetry computation and output•

ParaDyn

F77 + MPI•
atom− and force−decomposition parallelism•
embedded atom method (EAM) metal potentials•
lattice atom creation•
NVE, NVT, NPT integrators•
all serial DYNAMO features for controls and constraints•

GranFlow

F90 + MPI•
spatial−decomposition parallelism•
frictional granular potentials•
NVE integrator•
boundary conditions for granular flow and packing and walls•
particle insertion•

10. Future and history 72

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_coeff command

Syntax:

angle_coeff N args

N = angle type (see asterik form below)•
args = coefficients for one or more angle types•

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the force field coefficients for one or more angle types. The number and meaning of the coefficients
depends on the angle style. As described below, angle coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of angle types, then an asterik with no numeric values means all types
from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types from
n to N (inclusive). A middle asterik means all types from m to n (inclusive).

Note that using 2 angle_coeff commands for the same angle type is perfectly valid. For example, these
commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild−card asteriks should not be used since coefficients
for all N types are listed in the file. For example, under the "Angle Coeffs" section of a data file, the line that
corresponds to the 1st example above would be listed as

1 300.0 107.0

The units of each coefficient are shown in parenthesis.

For style charmm, specify 4 coefficients:

K (energy/radian^2)•

angle_coeff command 73

http://www.cs.sandia.gov/~sjplimp/lammps.html

theta0 (degrees)•
K_ub (energy/distance^2)•
r_ub (distance)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

For style class2, only coefficients for the Ea formula can be specified in the input script. These are the 4
coefficients:

theta0 (degrees)•
K2 (energy/radian^2)•
K3 (energy/radian^2)•
K4 (energy/radian^2)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Coefficients for the Ebb and Eba formulas must be specified in the data file.

For the Ebb formula, the coefficients are listed under a "BondBond Coeffs" heading and each line lists 3
coefficients:

M (energy/distance^2)•
r1 (distance)•
r2 (distance)•

For the Eba formula, the coefficients are listed under a "BondAngle Coeffs" heading and each line lists 4
coefficients:

N1 (energy/distance^2)•
N2 (energy/distance^2)•
r1 (distance)•
r2 (distance)•

The theta0 value in the Eba formula is not specified, since it is the same value from the Ea formula.

For style cosine, specify 1 coefficient:

K (energy)•

angle_coeff command 74

For style harmonic, specify 2 coefficients:

K (energy/radian^2)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.

Related commands:

angle_style

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style command

Syntax:

angle_style style

style = none or charmm or class2 or cosine or harmonic•

Examples:

angle_style harmonic
angle_style charmm

Description:

Set the formula LAMMPS will use to compute angle interactions between triplets of atoms. The list of atom
triplets is specified in the data or restart file and is read in by a read_data or read_restart command. The
coefficients for the formula for each angle type can also be specified in those files or via the angle_coeff
command. In all the formulas to follow, theta is the angle defined by the triplet of aotms.

A style of none means angle forces are not computed, even if angles are defined.

The charmm style uses the potential

angle_style command 75

http://www.cs.sandia.gov/~sjplimp/lammps.html

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
theta0, Kub, and Rub are coefficients defined for each angle type.

The class2 style uses the potential

where Ea is the angle term, Ebb is a bond−bond term, and Eba is a bond−angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths. Kn, M, Nn, theta0, r1, r2 are coefficients defined for
each angle type.

The cosine style uses the potential

where K is defined for each angle type.

The harmonic style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K. K and theta0 are coefficients defined for each angle type.

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Angle styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

angle_coeff

Default:

angle_style none

angle_style command 76

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

atom_modify command

Syntax:

atom_modify keyword value ...

one or more keyword/value pairs may be appended•
keyword = map

map value = array or hash

•

Examples:

atom_modify map hash

Description:

Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.
When the array value is used, each processor stores a lookup table of length N, where N is the total # of atoms
in the system. This is the fastest method for most simulations, but a processor can run out of memory to store
the table for very large simulations. The hash value uses a hash table to perform the lookups. This method can
be slightly slower than the array method, but its memory cost is proportional to N/P on each processor, where
P is the total number of processors running the simulation.

Restrictions: none

Related commands: none

Default:

The option defaults are map = array.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

atom_style command

Syntax:

atom_style style args

style = angle or atomic or bond or charge or dipole or eam or full or granular or molecular or hybrid•

 args = none for any style except hybrid
hybrid args = list of one or more styles

Examples:

atom_modify command 77

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

atom_style bond
atom_style full
atom_style hybrid eam charge

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read_data, read_restart, or create_box
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read_data command.

These are the attributes of each style. All styles store coordinates, velocities, atom IDs and types.

angle = bonds and angles − e.g. bead−spring polymers with stiffness•
atomic = only the default values•
bond = bonds − e.g. bead−spring polymers•
charge = charge•
dipole = charge + dipole moments•
molecular = bonds, angles, dihedrals, impropers − e.g. all−atom polymers•
eam = metal or alloy system with EAM potentials•
full = molecular + charge − e.g. biomolecules, charged polymers•
granular = granular material with rotational properties•

Typical simulations with a single pair potential will use only one of these styles. For cases where multiple pair
potentials will be used (see the pair_style hybrid command), it may be necessary to use multiple atom styles.
For example, a simulation of biomolecules on a metal surface might require both the eam and full styles. In
these cases the hybrid style can be used to list multiple atom styles. Atoms will then store and communicate
the union of all quantities implied by the individual styles.

LAMMPS can be extended with new atom styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

The angle, bond, full, and molecular styles are part of the "molecular" package. The granular style is part of
the "granular" package. They are only enabled if LAMMPS was built with that package. See the Making
LAMMPS section for more info.

Related commands:

read_data, pair_style

Default: none

atom_modify command 78

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_coeff command

Syntax:

bond_coeff N args

N = bond type (see asterik form below)•
args = coefficients for one or more bond types•

Examples:

bond_coeff 5 80.0 1.2
bond_coeff * 30.0 1.5 1.0 1.0
bond_coeff 1*4 30.0 1.5 1.0 1.0
bond_coeff 1 harmonic 200.0 1.0

Description:

Specify the force field coefficients for one or more bond types. The number and meaning of the coefficients
depends on the bond style. As described below, bond coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterik with no numeric values means all types
from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types from
n to N (inclusive). A middle asterik means all types from m to n (inclusive).

Note that using 2 bond_coeff commands for the same bond type is perfectly valid. For example, these
commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild−card asteriks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

The units of each coefficient are shown in parenthesis.

For style class2, specify 4 coefficients:

R0 (distance)•

bond_coeff command 79

http://www.cs.sandia.gov/~sjplimp/lammps.html

K2 (energy/distance^2)•
K3 (energy/distance^2)•
K4 (energy/distance^2)•

For style fene, specify 4 coefficients:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•

For style fene/expand, specify 5 coefficients:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•
delta (distance)•

For style harmonic, specify 2 coefficients:

K (energy/distance^2)•
r0 (distance)•

For style morse, specify 3 coefficients:

D (energy)•
alpha (inverse distance)•
r0 (distance)•

bond_coeff command 80

For style nonlinear, specify 3 coefficients:

epsilon (energy)•
r0 (distance)•
lamda (distance)•

For style hybrid, the first coefficient sets the bond style and the remaining coefficients are those appropriate to
that style. For example, these commands:

bond_coeff 1 fene 30.0 1.5 1.0 1.0
bond_coeff 2 harmonic 80.0 1.2

would set bonds of bond type 1 to be computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K,
R0, epsilon, sigma. Likewise, bonds of bond type 2 would be computed with a harmonic potential with
coefficients 80.0, 1.2 for K, r0.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.

Related commands:

bond_style

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style command

Syntax:

bond_style style args

style = none or class2 or fene or fene/expand or harmonic or morse or nonlinear or hybrid•

 args = none for any style except hybrid
hybrid args = list of one or more styles

Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

bond_style command 81

http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Set the formula(s) LAMMPS will use to compute bond interactions between pairs of atoms. The list of atom
pairs is specified in the data or restart file and is read in by a read_data or read_restart command. The
coefficients for the formula for each bond type can also be specified in those files or via the bond_coeff
command. In all the formulas to follow, r is the distance between the 2 atoms in the bond.

A style of none means bond forces are not computed, even if bond are defined.

The class2 style uses the potential

where r0 is the equilibrium bond distance. Kn and r0 are coefficients defined for each bond type.

The fene style uses the potential

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead−spring polymer
models. The first term is attractive, the 2nd Lennard−Jones term is repulsive. The first term extends to R0, the
maximum extent of the bond. The 2nd term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential. K,
R0, epsilon, and sigma are coefficients defined for each bond type.

The fene/expand style is similar to fene except that an extra shift factor of delta (positive or negative) is added
to r to effectively change the bead size of the bonded atoms. The corresponding potential is

The first term now extends to R0 + delta and the 2nd term is cutoff at 2^(1/6) sigma + delta. K, R0, epsilon,
sigma, and delta are coefficients defined for each bond type.

The harmonic style uses the potential

where r0 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K. K and r0 are
coefficients defined for each bond type.

The morse style uses the potential

bond_style command 82

where r0 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well. D, alpha, and r0 are coefficients defined for each bond type.

The nonlinear style uses the potential

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda. Epsilon, r0,
and lamda are coefficients defined for each bond type.

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond_coeff command or in the data file.

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Bond styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

bond_coeff, delete_bonds

Default:

bond_style none

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

boundary command

Syntax:

boundary x y z

boundary command 83

http://www.cs.sandia.gov/~sjplimp/lammps.html

x,y,z = p or s or f or m, one or two letters

p is periodic
f is non−periodic and fixed
s is non−periodic and shrink−wrapped
m is non−periodic and shrink−wrapped with a minimum value

•

Examples:

boundary p p f
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read_data, read_restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re−enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or volume rescaling (see the fix npt and fix volume/rescale commands). The p style must
be applied to both faces of a dimension.

The styles f, s, and m mean the box is non−periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink−wrapping), no matter how far they move. For style m, shrink−wrapping occurs, but
is bounded by the value specified in the data or restart file or set by the create_box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z−extent of all the atoms becomes less than 50.0.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

Related commands:

See the thermo_modify command for a discussion of lost atoms.

Default:

boundary p p p

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

cd command

Syntax:

cd dir

cd command 84

http://www.cs.sandia.gov/~sjplimp/lammps.html

dir = directory to change to•

Examples:

cd sub1
cd ../new2
cd ..

Description:

Change the working directory. All subsequent LAMMPS commands that access files for reading or writing
will use the new directory.

Restrictions:

If the specified directory does not exist, LAMMPS will not detect the error.

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (cd command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

clear command 85

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

create_atoms command

Syntax:

create_atoms type region−ID

type = atom type (1−N) of atoms to create on a lattice•
region−ID = ID of region each atom will belong to (optional)•

Examples:

create_atoms 1 regsphere
create_atoms 3

Description:

This command creates atoms on a lattice as an alternative to reading in their coordinates via a read_data or
read_restart command. A simulation box must already exist, which is created with the create_box command.

Before using this command, a lattice must be defined using the lattice command. If a region is not specified,
the create_atoms command fills the entire simulation box with atoms on the lattice. If a region is specified,
then the geometric volume is filled that is inside the simulation box and is also consistent with the region
volume.

The create_atoms command can be used multiple times with different lattice orientations to create grain
boundaries. Used in conjunction with the delete_atoms command, reasonably complex geometries can be
created. The create_atoms command can also be used to add atoms to a system previously read in from a data
or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing atoms
inappropriately.

Created atoms are assigned the specified atom type and a velocity of 0.0.

Restrictions:

An atom_style and lattice must be previously defined to use this command.

Related commands:

lattice, orient, origin, region, create_box, read_data, read_restart

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

create_box command

Syntax:

create_box N region−ID

create_atoms command 86

http://www.cs.sandia.gov/~sjplimp/lammps.html

N = # of atom types to use in this simulation•
region−ID = ID of region to use as simulation domain•

Examples:

create_atoms 2 mybox

Description:

This command creates a simulation box that encloses the specified region. Thus a region command must first
be used to define a geometric domain. If the region is not of style block, LAMMPS encloses it with a
rectangular simulation box.

The argument N is the number of atom types that will be used in the simulation.

Restrictions:

An atom_style and region must have been previously defined to use this command.

Related commands:

create_atoms, region

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

delete_atoms command

Syntax:

delete_atoms style args

style = group or region or overlap

group args = group−ID
region args = region−ID
overlap args = distance (distance units)

•

Examples:

delete_atoms group edge
delete_atoms region regsphere
delete_atoms overlap 0.3

Description:

Delete the specfied atoms. For style group, it is all atoms belonging to the group. For style region, it is any
atom that is in the region volume. For style overlap, pairs of atoms within the specified distance are searched
for, and one of the 2 atoms is deleted. See the units command for a discussion of distance units.

This command can be used to carve out voids from a block of material.

delete_atoms command 87

http://www.cs.sandia.gov/~sjplimp/lammps.html

After atoms are deleted, if the system is not molecular (no bonds), then atom IDs are re−assigned so that they
run from 1 to the number of atoms in the system. This is not done for molecular systems, since it would foul
up the bond connectivity that has already been assigned.

Restrictions: none

Related commands:

create_atoms

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

delete_bonds command

Syntax:

delete_bonds group−ID style args keyword ...

group−ID = group ID•
style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

•

zero or more keywords may be appended to the args•
keyword = undo or remove or special•

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is
useful for deleting interactions that have been previously turned off by bond−breaking potentials. It is also
useful for turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned
off via the neigh_modify exclude command. The fix shake command also effectively turns off certain bond
and angle interactions.

For all styles, an interaction is only turned off (or on) if all the atoms involved are in the specified group. For
style multi this is the only criterion applied − all types of bonds, angles, dihedrals, impropers in the group
turned off.

For style atom, one or more of the atoms involved must also be of the specified type. For style bond, only

delete_bonds command 88

http://www.cs.sandia.gov/~sjplimp/lammps.html

bonds are candidates for turn−off, and the bond must be of the specified type. Styles angle, dihedral, and
improper are treated similarly.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond−breaking
potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value. E.g. a bond_type of 2 is set to −2. The neighbor list creation routines will not include such an
interaction in their interaction lists. The default is also to not alter the list of 1−2, 1−3, 1−4 neighbors
computed by the special_bonds command and used to weight pairwise force and energy calculations. This
means that pairwise computations will proceed as if the bond (or angle, etc) were still turned on.

The keywords listed above can be appended to the argument list to alter the default behavior.

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if
they are currently turned off. This means any negative value is toggled to positive. Note that the fix shake
command also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned−off bonds (angles,
etc) to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts
accordingly. Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword.
Removal does not alter the pairwise 1−2, 1−3, 1−4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re−computes the pairwise 1−2, 1−3, 1−4 weighting list. The weighting list computation treats turned−off
bonds the same as turned−on. Thus, turned−off bonds must be removed if you wish to change the weighting
list.

Note that the choice of remove and special options affects how 1−2, 1−3, 1−4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires force fields (pair, bond, etc) be setup before using it, so that cutoff lengths are
initialized and inter−processor communication can be performed to coordinate the deleting of bonds.

If deleted bonds (angles, etc) are removed but the 1−2, 1−3, 1−4 weighting list is not recomputed, this can
cause a later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This
should only happen if the group used in the fix command includes both atoms in the bond, in which case you
probably should be recomputing the weighting list.

Related commands:

neigh_modify exclude, special_bonds, fix shake

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

delete_bonds command 89

http://www.cs.sandia.gov/~sjplimp/lammps.html

dielectric command

Syntax:

dielectric value

value = dielectric constant•

Examples:

dielectric 2.0

Description:

Set the dielectric constant for Coulombic interactions (pairwise and long−range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interations − e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.

Restrictions: none

Related commands:

pair_style

Default:

dielectric 1.0

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_coeff command

Syntax:

dihedral_coeff N args

N = dihedral type (see asterik form below)•
args = coefficients for one or more dihedral types•

Examples:

dihedral_coeff 1 80.0 1 3
dihedral_coeff * 80.0 1 3 0.5
dihedral_coeff 2* 80.0 1 3 0.5

Description:

Specify the force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. As described below, dihedral coefficients can also be set in the data
file read by the read_data command or in a restart file.

dielectric command 90

http://www.cs.sandia.gov/~sjplimp/lammps.html

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the coefficients for multiple dihedral types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of dihedral types, then an asterik with no numeric values means all
types from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types
from n to N (inclusive). A middle asterik means all types from m to n (inclusive).

Note that using 2 dihedral_coeff commands for the same dihedral type is perfectly valid. For example, these
commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral type 2:

dihedral_coeff * 80.0 1 3
dihedral_coeff 2 200.0 1 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild−card asteriks should not be used since
coefficients for all N types are listed in the file. For example, under the "Dihedral Coeffs" section of a data
file, the line that corresponds to the 1st example above would be listed as

1 80.0 1 3

See the dihedral_style command for more discussion of the formulas that use these coefficients. The units of
each coefficient are shown in parenthesis.

For style charmm, specify 4 coefficients:

K (energy)•
n (1,2,3,4,6)•
d (0 or 180 degrees)•
weighting factor (0.0 to 1.0)•

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral.

For style class2, only coefficients for the Ed formula can be specified in the input script. These are the 6
coefficients:

dielectric command 91

K1 (energy)•
phi1 (degrees)•
K2 (energy)•
phi2 (degrees)•
K3 (energy)•
phi3 (degrees)•

Coefficients for all the other formulas must be specified in the data file.

For the Embt formula, the coefficients are listed under a "MiddleBondTorsion Coeffs" heading and each line
lists 4 coefficients:

A1 (energy/distance)•
A2 (energy/distance)•
A3 (energy/distance)•
r2 (distance)•

For the Eebt formula, the coefficients are listed under a "EndBondTorsion Coeffs" heading and each line lists
8 coefficients:

B1 (energy/distance)•
B2 (energy/distance)•
B3 (energy/distance)•
C1 (energy/distance)•
C2 (energy/distance)•
C3 (energy/distance)•
r1 (distance)•
r3 (distance)•

For the Eat formula, the coefficients are listed under a "AngleTorsion Coeffs" heading and each line lists 8
coefficients:

D1 (energy/radian)•
D2 (energy/radian)•
D3 (energy/radian)•
E1 (energy/radian)•
E2 (energy/radian)•
E3 (energy/radian)•
theta1 (degrees)•
theta2 (degrees)•

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of D and E are in energy/radian.

For the Eaat formula, the coefficients are listed under a "AngleAngleTorsion Coeffs" heading and each line
lists 3 coefficients:

M (energy/radian^2)•
theta1 (degrees)•
theta2 (degrees)•

dielectric command 92

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of M are in energy/radian^2.

For the Ebb13 formula, the coefficients are listed under a "BondBond13 Coeffs" heading and each line lists 3
coefficients:

N (energy/distance^2)•
r1 (distance)•
r3 (distance)•

For style harmonic, specify 3 coefficients:

K (energy)•
d (+1 or −1)•
n (1,2,3,4,6)•

For style multiharmonic, specify 5 coefficients:

A1 (energy)•
A2 (energy)•
A3 (energy)•
A4 (energy)•
A5 (energy)•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a data
file.

Related commands:

dihedral_style

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dielectric command 93

http://www.cs.sandia.gov/~sjplimp/lammps.html

dihedral_style command

Syntax:

dihedral_style style

style = none or charmm or class2 or harmonic or multi/harmonic•

Examples:

dihedral_style harmonic
dihedral_style multi/harmonic

Description:

Set the formula LAMMPS will use to compute dihedral interactions between quadruplets of atoms. The list of
atom quadruplets is specified in the data or restart file and is read in by a read_data or read_restart command.
The coefficients for the formula for each dihedral type can also be specified in those files or by the
dihedral_coeff command. In all the formulas to follow, phi is the torsional angle defined by the quadruplet of
atoms.

Here are some important points to take note of when defining the LAMMPS dihedral coefficients in the
formulas that follow so that they are compatible with other force fields:

The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans =
0 degrees.

•

Some force fields reverse the sign convention on d.•
Some force fields divide/multiply K by the number of multiple torsions that contain the j−k bond in an
i−j−k−l torsion.

•

Some force fields let n be positive or negative which corresponds to d = 1 or −1.•

A style of none means dihedral forces are not computed, even if dihedrals are defined.

The charmm style uses the potential

K, d, and n are coefficients defined for each dihedral type. Additionally, a weighting factor if defined (see the
dihedral_coeff command) which is applied to the pairwise LJ and Coulombic interaction between the 1st and
4th atom in the dihedral quadruplet.

The class2 style uses the potential

dihedral_style command 94

where Ed is the dihedral term, Embt is a middle−bond−torsion term, Eebt is an end−bond−torsion term, Eat is
an angle−torsion term, Eaat is an angle−angle−torsion term, and Ebb13 is a bond−bond−13 term.

Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths. Kn, An, Bn, Cn, Dn, En,
M, N, Phi_n, theta1, theta2, r1, r2, r3 are coefficients defined for each dihedral type.

The harmonic style uses the potential

K, d, and n are coefficients defined for each dihedral type.

The multi/harmonic style uses the potential

A1, A2, A3, A4, and A5 are coefficients defined for each dihedral type.

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Dihedral styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

dihedral_coeff

Default:

dihedral_style none

dihedral_style command 95

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dimension command

Syntax:

dimension N

N = 2 or 3•

Examples:

dimension 2

Description:

Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation,
this command should be used prior to setting up a simulation box via the create_box or read_data commands.
Restart files also store this setting.

See the discussion in this section for additional instructions on how to run 2d simulations.

Restrictions:

This command must be used before the simulation box is defined by a read_data or create_box command.

Related commands:

fix enforce2d

Default:

dimension 3

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dipole command

Syntax:

dipole I value

I = atom type (see asterik form below)•
value = dipole•

Examples:

dipole 1 1.0
dipole 3 2.0
dipole 3*5 0.0

dimension command 96

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Set the dipole moment for all atoms of one or more atom types. This command is only used for atom styles
that require dipole moments (atom_style dipole). A value of 0.0 should be used if the atom type has no dipole
moment. Dipole values can also be set in the read_data data file. See the units command for a discussion of
dipole units.

I can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the dipole moment for multiple atom types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of atom types, then an asterik with no numeric values means all
types from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types
from n to N (inclusive). A middle asterik means all types from m to n (inclusive).

A line in a data file that specifies a dipole moement uses the exact same format as the arguments of the dipole
command in an input script, except that no wild−card asterik can be used. For example, under the "Dipoles"
section of a data file, the line that corresponds to the 1st example above would be listed as

1 1.0

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All dipoles moments must be defined before a simulation is run (if the atom style requires dipoles be set).

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group−ID style args keyword value ...

group−ID = ID of group of atoms to displace•
style = move or ramp

move args = delx dely delz
 delx,dely,delz = distance to displace in each dimension (distance units)

ramp args = ddim dlo dhi dim clo chi
 ddim = x or y or z
 dlo,dhi = displacement distance between dlo and dhi (distance units)
 dim = x or y or z
 clo,chi = lower and upper bound of domain to displace (distance units)

•

zero or more keyword/value pairs may be appended to the args

 keyword = units
 value = box or lattice

•

displace_atoms command 97

http://www.cs.sandia.gov/~sjplimp/lammps.html

Examples:

displace_atoms top move 0 −5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be useful to move atoms a large distance before beginning a simulation.
For example, in a shear simulation, an initial strain can be imposed on the system. Or two groups of atoms can
be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance. The ramp style displaces atoms a
variable amount in one dimension depending on the atom's coordinate in a (possibly) different dimension. For
example, the second example command displaces atoms in the x−direction an amount between 0.0 and 5.0
distance units. Each atom's displacement depends on the fractional distance its y coordinate is between 2.0
and 20.5. Atoms with y−coordinates outside those bounds will be moved the minimum (0.0) or maximum
(5.0) amount.

Distance units for the displacement are determined by the setting of box or lattice for the units keyword. Box
means distance units as defined by the units command − e.g. Angstroms for real units. Lattice means to use
lattice spacings as defined by the lattice command. The default is to use lattice units.

Care should be taken not to move atoms on top of other atoms. After the move, atoms are remapped to the
periodic simulation box. In parallel, atoms should not be moved so far that they cross more than one
processor's sub−domain, else they may be lost. If this is a problem, successive displace_atom commands can
be used to move a greater distance.

Restrictions: none

Related commands: none

Default:

The option defaults are units = lattice.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dump command

Syntax:

dump ID group−ID style N file args

ID = user−assigned name for the dump•
group−ID = ID of the group of atoms to be dumped•
style = atom or velocity or bond or custom•
N = dump every this many timesteps•
file = name of file to write dump info to•
args = list of arguments for a particular style

atom args = none

•

dump command 98

http://www.cs.sandia.gov/~sjplimp/lammps.html

velocity args = none
bond args = none
custom args = list of atom attributes

 possible attributes = tag, type, x, y, z, xs, ys, zs, ix, iy, iz,
 vx, vy, vz, fx, fy, fz, q, mux, muy, muz, tqx, tqy, tqz,
 centro, eng, sxx, syy, szz, sxy, sxz, syz
 tag = atom ID
 type = atom type
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 ix,iy,iz = box image that the atom is in in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipolar atom
 tqx,tqy,tqz = torque on dipolar atoms
 centro = per−atom centro−symmetry parameter
 eng = per−atom pairwise energy
 sxx, syy, szz, sxy, sxz, syz = per−atom stress tensor components

Examples:

dump myDump all atom 100 dump.atom
dump 2 subgroup atom 50 dump.run
dump 3 all velocity 1000 dump.vels
dump 4ab all custom 100 dump.myforce tag type x y vx fx
dump 4ab all custom 100 dump.myforce tag type eng sxx syy szz

Description:

Dump a snapshot of atom quantities to a file every so many timesteps. When a dump is defined, the file is
opened. The file is closed when an undump command is used or when LAMMPS exits. Only information for
atoms in the specified group is dumped. Because snapshot data is collected from multiple processors, the
order of lines (typically one per atom) written into the dump file for a single snapshot is indeterminate.

Dumps are performed on timesteps that are a multiple of N, including timestep 0. If one run ends and another
begins on a timestep that is a multiple of N, only one snapshot is written.

The style determines what quantities are written to the file. Settings made via the dump_modify command can
alter the output format.

For style atom, atom coordinates are written to the file. For header settings item and self of the dump_modify
command, the atom ID and type are also written. For header setting xyz, only the atom type is included. By
default, coordinates are in normalized units from 0.0 to 1.0. The scale setting of the dump_modify command
enables unnormalized coordinates to be written out. Because periodic boundary conditions are enforced only
on timesteps when neighbor lists are rebuilt, the coordinates of some atoms may be slightly outside the
simulation box.

For style velocity, atom velocities are written to the file along with the atom ID and type.

For style bond, the bond topology between atoms is written, in the same format they are specified in the data
file read by the read_data command. Both atoms in the bond must be in the dump group for the bond to be
written. Any bonds that have been broken (see the bond_style command) are not written. Bonds that have
been turned off (see the fix shake or delete_bonds commands) are written into the file.

dump command 99

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are described above and will appear in the order specified. Be careful not to specify a
quantity that is not defined for a particular simulation − e.g. q for atom style bond, since that atom style
doesn't assign charges. Dumps occur at the very end of a timestep, so atom attributes will include any effects
due to fixes that are applied during the timestep.

The mux, muy, muz, tqy, tqx, tqy attributes are specific to dipolar systems defined with an atom style of dipole.

The centro attribute causes the centro−symmetry parameter to be computed for each atom in the dump group
using the following formula from (Kelchner)

where the 12 nearest neighbors are found and Ri and Ri+6 are the vectors from the central atom to the
opposite pair of nearest neighbors. In solid state systems this is a useful measure of the local lattice disorder
around an atom and can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g.
a dislocation or stacking fault), or at a surface. The neighbor list needed to compute this quantity is
constructed each time the dump is performed. Thus it can be inefficient to dump this quantity too frequently
or to have multiple dump commands, each with a centro attribute.

The eng attribute computes the pairwise energy for each atom. This is its pairwise interaction with all of its
neighbors (divided by 2). Summed over all atoms, this should equal the pairwise energy of the entire system
(Van der Waals + Coulombic). However, for force fields that include a contribution to the pairwise energy
that is computed as part of dihedral terms (i.e. 1−4 interactions), this contribution is not included in the
per−atom pairwise energy. Computation of the per−atom energy requires a loop thru the neighbor list and
inter−processor communication, so it can be inefficient to dump this quantity too frequently or to have
multiple dump commands, each with a eng attribute.

The sxx, syy, szz, sxy, sxz, syz attributes compute the pairwise stress tensor for each atom where the ab
component of the stress on atom i is given by

where the first term is a kinetic energy component for atom i, j loops over the N neighbors of atom i, and Fb is
one of 3 components of force on atom i due to atom j. Both a and b can take on values x,y,z to generate the 6
components of the symmetric tensor.

Note that this formula for stress does not include virial contributions from intra−molecular interactions (e.g.
bonds, angles, torsions, etc). Also note that this quantity is the negative of the per−atom pressure tensor. It is
also really a stress−volume formulation. It would need to be divided by a per−atom volume to have units of
stress, but an individual atom's volume is not easy to compute in a deformed solid. Computation of stress
tensor components requires a loop thru the neighbor list and inter−processor communication, so it can be
inefficient to dump this quantity too frequently or to have multiple dump commands, each with stress tensor
attributes.

dump command 100

See this section for information on how to modify LAMMPS to dump other kinds of per−atom quantities.

Restrictions:

The bond style is part of the "molecular" package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Granular systems and pair potentials cannot be used to compute per−atom energy and stress. The fix gran/diag
command should be used instead.

Related commands:

dump_modify, undump

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dump_modify command

Syntax:

dump_modify dump−ID keyword value ...

dump−ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
keyword = format or scale or image or header or flush

format value = C−style format to use when atom quantites are written
scale value = yes or no
image value = yes or no
header value = item or self or xyz
flush value = yes or no

•

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes
dump_modify myDump image yes scale no flush yes
dump_modify 1 header xyz

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump
styles.

Each dump style has a default C−style format string which simply specifies %d for integers and %g for real
values. The format keyword can be used to override the default with a new C−style format string. Do not
include a trailing "\n" newline character in the format string.

dump_modify command 101

http://www.cs.sandia.gov/~sjplimp/lammps.html

The scale and image keywords apply only to dump atom commands. A scale value of yes means atom coords
are written in normalized (scaled) units from 0.0 to 1.0 in each box dimension. A value of no means they are
written in absolute distance units (e.g. Angstroms or sigma). If the image value is yes, 3 flags are appended to
each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image
flag of −3 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the
box boundary 3 times and is really 3 box lengths to the left of its current coordinate.

The header keyword determines the file format for the snapshots. A value of item means each keyword is
prefaced by "ITEM:" which is compatible with previous versions of LAMMPS. A value of self is a
self−documenting format where each keyword is followed by the number of rows and columns of data that
follow it. This makes it easy to write post−processing codes that parse the dump output. A value of xyz writes
the dump file in the XYZ format used by other molecular modeling codes. For dump atom commands, each
line will have 4 quantities: the atom type and unscaled coordinates. For dump custom commands, each line
will still list the quantities it specifies.

The flush option invokes a flush operation after a dump snapshot is written to the dump file. This insures the
output in that file is current (no buffering by the OS), even if LAMMPS halts before the simulation completes.

Restrictions: none

Related commands:

dump, undump

Default:

The option defaults are format = %d and %g for each integer or floating point value, scale = yes, image = no,
header = item, flush = no.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log file
as it is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

Restrictions: none

echo command 102

http://www.cs.sandia.gov/~sjplimp/lammps.html

Related commands: none

Default:

echo log

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix command

Syntax:

fix ID group−ID style args

ID = user−assigned name for the fix•
group−ID = ID of the group of atoms to apply the fix to•
style = one of a long list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

fix 1 all nve
fix 3 all nvt 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due
to time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary
conditions, computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be
added − see this section for a discussion.

Each fix style has its own documentation page which describes its arguments and what it does. For example,
see the fix setforce page for information on style setforce.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes both operate at the same
stage of the timestep, they are invoked in the order they were specified in the input script.

Specifying a new fix with the same ID as an existing fix effectively replaces the old fix (and its parameters)
with the new fix. This can only be done if the new fix has the same style as the existing fix.

Fixes can be deleted with the unfix command. Note that this is the only way to turn off a fix; simply
specifying a new fix with a similar style will not turn off the first one. For example, using a "fix nve"
command for a second run after using a "fix nvt" command for the first run, will not cancel out the NVT time
integration invoked by the "fix nvt" command. Thus two time integrators would be in place!

Here is an alphabetic list of fix styles defined in LAMMPS:

fix addforce − add a force to each atom•
fix aveforce − add an averaged force to each atom•

fix command 103

http://www.cs.sandia.gov/~sjplimp/lammps.html

fix com − compute a center−of−mass•
fix drag − drag atoms towards a defined coordinate•
fix enforce2d − zero out z−dimension velocity and force•
fix freeze − freeze atoms in a granular simulation•
fix gran/diag − compute granular diagnostics•
fix gravity − add gravity to atoms in a granular simulation•
fix indent − impose force due to an indenter•
fix insert − add new atoms to a granular simulation•
fix langevin − Langevin temperature control•
fix lineforce − constrain atoms to move in a line•
fix msd − compute mean−squared displacement (i.e. diffusion coefficient)•
fix nph − constant NPH time integration via Nose/Hoover•
fix npt − constant NPT time integration via Nose/Hoover•
fix nve − constant NVE time integration•
fix nve/gran − NVE time integration for granular systems•
fix nvt − constant NVT time integration via Nose/Hoover•
fix planeforce − constrain atoms to move in a plane•
fix rdf − compute radial distribution functions•
fix rigid − constrain one or more clusters of atoms to move as a rigid body•
fix setforce − set the force on each atom•
fix shake − SHAKE constraints on bonds and/or angles•
fix spring − apply harmonic spring force to atoms•
fix temp/rescale − temperature control by velocity rescaling•
fix tmd − guide a group of atoms to a new configuration•
fix viscous − viscous damping for granular simulations•
fix volume/rescale − density control by volume rescaling•
fix wall/gran − frictional walls for granular simulations•
fix wall/lj93 − Lennard−Jones 9/3 walls•
fix wiggle − oscillate walls and frozen atoms•

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

The freeze, gran/diag, gravity, insert, nve/gran, and wall/gran styles are part of the "granular" package.

Related commands:

unfix, fix_modify

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix addforce command

Syntax:

fix ID group−ID addforce fx fy fz

fix addforce command 104

http://www.cs.sandia.gov/~sjplimp/lammps.html

ID, group−ID are documented in fix command•
addforce = style name of this fix command•
fx,fy,fz = force component values (force units)•

Examples:

fix kick flow addforce 1.0 0.0 0.0

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Restrictions: none

Related commands:

fix setforce, fix aveforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix aveforce command

Syntax:

fix ID group−ID aveforce fx fy fz

ID, group−ID are documented in fix command•
aveforce = style name of this fix command•
fx,fy,fz = force component values (force units)•

Examples:

fix pressdown topwall aveforce 0.0 −1.0 0.0
fix 2 bottomwall aveforce NULL −1.0 0.0

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same
force. This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change
over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each
atom is then set to the average value plus the component specified in this command. This means each atom in
the group receives the same force.

If any of the arguments is specified as NULL then the forces in that dimension are not changed. Note that this
is not the same as specifying a 0.0 value, since that sets all forces to the same average value without adding in
any additional force.

fix aveforce command 105

http://www.cs.sandia.gov/~sjplimp/lammps.html

Restrictions: none

Related commands:

fix setforce, fix addforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix com command

Syntax:

fix ID group−ID com N file

ID, group−ID are documented in fix command•
com = style name of this fix command•
N = compute center−of−mass every this many timesteps•
file = filename to write center−of−mass info to•

Examples:

fix 1 all com 100 com.out

Description:

Compute the center−of−mass of the group of atoms every N steps, including all effects due to atoms passing
thru periodic boundaries. Write the results to the specified file.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix drag command

Syntax:

fix ID group−ID drag x y z fmag delta

ID, group−ID are documented in fix command•
drag = style name of this fix command•
x,y,z = coord to drag atoms towards•
fmag = magnitude of force to apply to each atom (force units)•
delta = cutoff distance inside of which force is not applied (distance units)•

fix com command 106

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Examples:

fix center small−molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (x,y,z). The magnitude of the force is
specified by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.

Restrictions: none

Related commands:

fix spring

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix efield command

Syntax:

fix ID group−ID efield ex ey ez

ID, group−ID are documented in fix command•
efield = style name of this fix command•
ex,ey,ez = E−field component values (electric field units)•

Examples:

fix kick external−field efield 1.0 0.0 0.0

Description:

Add a force F = qE to each charged atom in the group due to an external electric field being applied to the
system.

Restrictions: none

Related commands:

fix addforce

Default: none

fix efield command 107

http://www.cs.sandia.gov/~sjplimp/lammps.html

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix enforce2d command

Syntax:

fix ID group−ID enforce2d

ID, group−ID are documented in fix command•
enforce2d = style name of this fix command•

Examples:

fix 5 all enforce2d

Description:

Zero out the z−dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix freeze command

Syntax:

fix ID group−ID freeze

ID, group−ID are documented in fix command•
freeze = style name of this fix command•

Examples:

fix 2 bottom freeze

Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from
moving in a simulation.

Restrictions:

Can only be used with atom_style granular.

fix enforce2d command 108

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

There can only be a single freeze fix defined. This is because other parts of the code (pair potentials,
thermodynamics, etc) treat frozen particles differently and need to be able to reference a single group to which
this fix is applied.

Related commands: none

atom_style granular

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix gran/diag command

Syntax:

fix ID group−ID gran/diag nevery file zlayer

ID, group−ID are documented in fix command•
gran/diag = style name of this fix command•
nevery = compute diagnostics every this many timesteps•
file = filename to store diagnostic info in•
zlayer = bin size in z dimension•

Examples:

fix 1 all gran/diag 1000 tmp 0.9

Description:

Compute aggregate density, velocity, and stress diagnostics for a group of granular atoms as a function of z
depth in the granular system. The results are written to 3 files named file.den, file.vel, and file.str. The z bins
begin at the bottom of the system and extend upward with a thickness of zlayer for each bin. The quantities
written to the file are averaged over all atoms in the bin.

Restrictions:

Can only be used with atom_style granular.

Related commands:

atom_style granular

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix gran/diag command 109

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

fix gravity command

Syntax:

fix ID group gravity style args

ID, group are documented in fix command•
gravity = style name of this fix command•
style = chute or spherical or gradient or vector

chute args = angle
 angle = angle in +x away from −z axis (in degrees)

spherical args = phi theta
 phi = azimuthal angle from +x axis (in degrees)
 theta = angle from +z axis (in degrees)

gradient args = phi theta phi_grad theta_grad
 phi = azimuthal angle from +x axis (in degrees)
 theta = angle from +z axis (in degrees)
 phi_grad = rate of change of angle phi (full rotations per time unit)
 theta_grad = rate of change of angle theta
 (full rotations per time unit)

vector args = magnitude x y z
 magnitude = size of acceleration (force/mass units)
 x y z = vector direction to apply the acceleration

•

Examples:

fix 1 all gravity chute 24.0
fix 1 all gravity spherical 0.0 −180.0
fix 1 all gravity gradient 0.0 −180.0 0.0 0.1
fix 1 all gravity vector 100.0 1 1 0

Description:

Impose an additional acceleration on each particle in the group. For granular systems the magnitude is chosen
so as to be due to gravity. For non−granular systems the magnitude of the acceleration is specified, so it can
be any kind of driving field desired (e.g. a pressure gradient inducing a Poisselle flow). Note that this is
different from what the fix addforce command does, since it adds the same force to each atom, independent of
its mass. This command adds the same acceleration to each atom (force/mass).

The first 3 styles apply to granular systems. Style chute is typically used for simulations of chute flow where
the specified angle is the chute angle, with flow occurring in the +x direction. Style spherical allows an
arbitrary 3d direction to be specified for the gravity vector. Style gradient allows the direction of the gravity
vector to be time dependent. The units of the gradient arguments are in full rotations per time unit. E.g. a
timestep of 0.001 and a gradient of 0.1 means the gravity vector would rotate thru 360 degrees every 10,000
timesteps. For the time−dependent case, the initial direction of the gravity vector is phi,theta at the time the fix
is specified.

The strength of the acceleration due to gravity is 1.0 in LJ units, which are the only allowed units for granular
systems.

Style vector is used for non−granular systems. An acceleration of the specified magnitude is applied to each
atom in the group in the vector direction given by (x,y,z).

fix gravity command 110

Restrictions:

Styles chute, spherical, and gradient can only be used with atom_style granular. Style vector can only be used
with non−granular systems.

Related commands:

atom_style granular, fix addforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix indent command

Syntax:

fix ID group−ID indent k keyword args ...

ID, group−ID are documented in fix command•
indent = style name of this fix command•
k = force constant for indenter surface (force/distance units)•
one or more keyword/value pairs may be appended to the args•
keyword = sphere or cylinder or vel or units

sphere args = x y z R
 x,y,z = initial position of center of indenter
 R = sphere radius of indenter (distance units)

cylinder args = dim c1 c2 R
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 R = cylinder radius of indenter (distance units)

vel args = vx vy vz
 vx,vy,vz = velocity of center of indenter (velocity units)

units value = lattice or box
 lattice = the geometry is defined in lattice units
 box = the geometry is defined in simulation box units

•

Examples:

fix 1 all indent 10.0 sphere 0.0 0.0 15.0 3.0 vel 0.0 0.0 −1.0
fix 2 flow indent 10.0 cylinder z 0.0 0.0 10.0 units box

Description:

Insert an indenter within a simulation box. The indenter repels all atoms that touch it, so it can be used to push
into a material or as an obstacle in a flow.

The indenter can either be spherical or cylindrical. You must set one of those 2 keywords.

A spherical indenter exerts a force of magnitude

F(r) = − k (r − R)

fix indent command 111

http://www.cs.sandia.gov/~sjplimp/lammps.html

on each atom where k is the specified force constant, r is the distance from the atom to the center of the
indenter, and R is the radius of the indenter. The force is repulsive and F(r) = 0 for r > R.

A cylindrical indenter exerts the same force, except that r is the distance from the atom to the center axis of
the cylinder. The cylinder extends infinitely along its axis.

If the vel keyword is specified, the center (or axis) of the spherical (or cylindrical) indenter will move during
the simulation, based on its initial (x,y,z) position and the specified (vx,vy,vz).

The units keyword determines the meaning of the distance units used to define the indenter. A box value
selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A
lattice value means the distance units are in cubic lattice spacings. The lattice command must first be used to
define a lattice. Note that the units choice affects not only the indenter's physical geometry, but also its
velocity and force constant since they are defined in terms of distance as well.

Restrictions: none

Related commands: none

Default:

The option defaults are vel = 0,0,0 and units = lattice.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix insert command

Syntax:

fix ID group−ID insert N type seed keyword values ...

ID, group−ID are documented in fix command•
insert = style name of this fix command•
N = # of atoms to insert•
type = atom type to assign to inserted atoms•
seed = random # seed•
one or more keyword/value pairs may be appended to args•
keyword = region or diam or dens or vol or zrate or vel

region value = region−ID
 region−ID = ID of region to use as insertion volume

diam values = lo hi
 lo,hi = range of diameters for inserted particles (distance units)

dens values = lo hi
 lo,hi = range of densities for inserted particles

vol values = fraction Nattempt
 fraction = desired volume fraction for filling insertion volume
 Nattempt = max # of insertion attempts per atom

zrate value = rate
 rate = z velocity at which insertion volume moves (velocity units)

vel values = vxlo vxhi vylo vyhi vz
 vxlo,vxhi = range of x velocities for inserted particles (velocity units)
 vylo,vyhi = range of y velocities for inserted particles (velocity units)

•

fix insert command 112

http://www.cs.sandia.gov/~sjplimp/lammps.html

 vz = z velocity assigned to inserted particles (velocity units)

Examples:

fix 3 all insert 1000 2 29494 region myblock
fix 2 all insert 10000 1 19985583 region disk vol 0.33 100 zrate 1.0 diam 0.9 1.1

Description:

Insert particles into a granular run every few timesteps within a specified region until N particles have been
inserted. This is useful for simulating the pouring of particles into a container.

Inserted particles are assigned the specified atom type and are assigned to two groups: the default group "all"
and the group specified in the fix insert command (which can also be "all").

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be of type block or a z−axis cylinder and must be
defined with side = in.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The larger the volume, the more particles that can be inserted at any one timestep.
Particles are inserted again after enough time has elapsed that the previously inserted particles fall out of the
insertion volume under the influence of gravity. Insertions continue every so many timesteps until the desired
of particles has been inserted.

All other keywords are optional with defaults as shown below. The diam, dens, and vel options enable inserted
particles to have a range of diameters or densities or xy velocities. The specific values for a particular inserted
particle will be chosen randomly and uniformly between the specified bounds. The vz value for option vel
assigns a z−velocity to each inserted particle.

The vol option specifies what volume fraction of the insertion volume will be filled with particles. The higher
the value, the more particles are inserted each timestep. Since inserted particles cannot overlap, the maximum
volume fraction should be no higher than about 0.6. LAMMPS will make up to Nattempt tries to insert a new
particle without overlaps. If it fails it prints a warning.

The zrate option allows the insertion volume to move in the z direction. This enables pouring particles from a
successively higher height over time.

Restrictions:

Can only be used with atom_style granular. A gravity fix in the −z direction must be defined for use in
conjunction with this fix.

Related commands:

fix_gravity, region

Default:

The option defaults are diam = 1.0 1.0, dens = 1.0 1.0, vol = 0.25 50, zrate = 0.0, vel = 0.0 0.0 0.0 0.0 0.0.

fix insert command 113

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix langevin command

Syntax:

fix ID group−ID langevin Tstart Tstop damp seed xflag yflag zflag

ID, group−ID are documented in fix command•
langevin = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
damp = Langevin damping parameter (time units)•
seed = random # seed to use for white noise•
xflag,yflag,zflag = 0/1 for whether to apply to each dimension (optional)•

Examples:

fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 0 1 1

Description:

Apply a Langevin thermostat to a group of atoms. Uniform random numbers are used to generate a
white−noise term that is added to the force of each atom to keep them at a specified temperature. The desired
temperature at each timestep is a ramped value during the run from Tstart to Tstop. The damp parameter is
specified in time units and determines how rapidly the temperature is relaxed. For example, a value of 100.0
means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the units
command).

The random # seed should be a non−zero integer with 1 to 8 digits. A Marsaglia random number generator is
used. Each processor uses the input seed to generate its own unique seed and its own stream of random
numbers. Thus the dynamics of the system will not be identical on two runs on different numbers of
processors. Also, the state of the random number generator is not saved in a restart file. This means you
cannot do exact restarts when a fix langevin command is used.

The last 3 arguments are flags that specify which dimensions to add langevin white noise to. A flag of 0
means do not add noise to that dimension. A flag of 1 means add noise. The default is 1 for all 3 dimensions.
These flags are optional; use all 3 or none of them.

The way that temperature is computed by this fix can be changed by using the fix_modify command.

A langevin fix does not update the coordinates or velocities of its atoms. It is normally used with a fix of style
nve that does that. A langevin fix should not normally be used on atoms that also have their temperature
controlled by another fix − e.g. a nvt or temp/rescale fix.

Restrictions: none

Related commands:

fix nvt, fix temp/rescale, fix_modify

fix langevin command 114

http://www.cs.sandia.gov/~sjplimp/lammps.html

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix lineforce command

Syntax:

fix ID group−ID lineforce x y z

ID, group−ID are documented in fix command•
lineforce = style name of this fix command•
x y z = direction of line as a 3−vector•

Examples:

fix hold boundary lineforce 0.0 1.0 1.0

Description:

Adjust the forces on each atom in the group so that it's motion will be along the linear direction specified by
the vector (x,y,z). This is done by subtracting out components of force perpendicular to the line.

If the initial velocity of the atom is 0.0 (or along the line), then it should continue to move along the line
thereafter.

Restrictions: none

Related commands:

fix planeforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix_modify command

Syntax:

fix_modify fix−ID keyword value ...

fix−ID = ID of the fix to modify•
one or more keyword/value pairs may be appended•
keyword = temp

temp value = temperature ID

•

Examples:

fix_modify 3 temp myTemp

fix lineforce command 115

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Modify a parameter of a previously defined fix. Parameters are only relevant to particular fix styles.

The temp keyword is used to determine how a fix computes temperature. The specified temperature ID must
have been previously defined by the user via the temperature command. The default setting for temp is
temperature ID = default. Fix styles that use the temp setting are temp/rescale, nvt, and npt.

Restrictions: none

Related commands:

fix, temperature

Default:

The option defaults are temp = default.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix msd command

Syntax:

fix ID group−ID msd N file

ID, group−ID are documented in fix command•
msd = style name of this fix command•
N = compute mean−squared displacement every this many timesteps•
file = filename to write mean−squared displacement info to•

Examples:

fix 1 all msd 100 diff.out

Description:

Compute the mean−squared displacement of the group of atoms every N steps, including all effects due to
atoms passing thru periodic boundaries. The slope of the mean−squared displacement versus time is
proportional to the diffusion coefficient of the diffusing atoms. The "origin" of the displacements is the
position of each atom at the time the fix command was issued. Write the results to the specified file.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix msd command 116

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

fix nph command

Syntax:

fix ID group−ID nph p−style args keyword value ...

ID, group−ID are documented in fix command•
nph = style name of this fix command•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

aniso args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended to the args•
keyword = drag or dilate

drag value = drag factor added to barostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all nph xyz 0.0 0.0 1000.0
fix 2 all nph xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 1.0
fix 2 all nph aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0

Description:

Perform constant NPH integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover pressure barostat. P is pressure. This creates a system trajectory consistent with the
isobaric ensemble. Unlike fix npt, temperature will not be controlled if no other fix is used. Temperature can
be controlled independently by using "fix langevin or fix temp/rescale.

The atoms in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

By default, the temperature is also computed for all atoms (used as part of the pressure calculation), regardless
of what group is specified. This is because the pressure contains a kinetic energy term which is derived from
temperature, and the kinetic energy should be consistent with the virial term computed using all atoms. This
can be changed by assigning a different temperature method to the fix via the fix_modify command.
LAMMPS will warn you if you choose to compute temperature on a subset of atoms.

fix nph command 117

The pressure can be controlled in one of several styles, as specified by the p−style argument. Style xyz means
couple all 3 dimensions together when pressure is computed (isotropic pressure), and dilate/contract the 3
dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure
computation and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its
pressure component as the driving force.

For style aniso, all 3 dimensions dilate/contract independently using their individual pressure components as
the 3 driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no
pressure control is applied to that dimension so that the box dimension remains unchanged.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat is applied. The optional drag keyword will damp these oscillations,
although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non−zero value adds a drag term; the larger the value specified, the greater the damping effect.
Performing a short run and monitoring the pressure is the best way to determine if the drag term is working.
Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary conditions
(tilted box) are not implemented in LAMMPS.

For all styles, the Pdamp parameter is specified in time units and determines how rapidly the pressure is
relaxed. For example, a value of 1000.0 means to relax the temperature in a timespan of (roughly) 1000 time
units (tau or fmsec or psec − see the units command).

Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified
as NULL can be non−periodic or periodic.

You should not use fix nvt with this fix. Instead, use fix npt if you want to control both temperature and
pressure via Nose/Hoosver.

Related commands:

fix nve, fix npt, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nph command 118

http://www.cs.sandia.gov/~sjplimp/lammps.html

fix npt command

Syntax:

fix ID group−ID npt Tstart Tstop Tdamp p−style args keyword value ...

ID, group−ID are documented in fix command•
npt = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
 Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended to the args•
keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all npt 300.0 300.0 100.0 xyz 0.0 0.0 1000.0
fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0
fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2
fix 2 water npt 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to udpate positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat and Nose/Hoover pressure barostat. P is pressure; T is
temperature. This creates a system trajectory consistent with the isothermal−isobaric ensemble.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec
− see the units command).

The atoms in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

By default, the temperature is also computed for all atoms, regardless of what group is specified. This is
because the pressure contains a kinetic energy term which is derived from temperature, and the kinetic energy

fix npt command 119

should be consistent with the virial term computed using all atoms. This can be changed by assigning a
different temperature method to the fix via the fix_modify command. LAMMPS will warn you if you choose
to compute temperature on a subset of atoms.

The pressure can be controlled in one of several styles, as specified by the p−style argument. Style xyz means
couple all 3 dimensions together when pressure is computed (isotropic pressure), and dilate/contract the 3
dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure
computation and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its
pressure component as the driving force.

For style aniso, all 3 dimensions dilate/contract independently using their individual pressure components as
the 3 driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no
pressure control is applied to that dimension so that the box dimension remains unchanged.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp
these oscillations, although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the
Nose/Hoover formalism unchanged. A non−zero value adds a drag term; the larger the value specified, the
greater the damping effect. Performing a short run and monitoring the pressure and temperature is the best
way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is sufficient to damp
oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary conditions
(tilted box) are not implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on which
pressure is relaxed.

Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified
as NULL can be non−periodic or periodic.

Related commands:

fix nve, fix nvt, fix nph, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix npt command 120

http://www.cs.sandia.gov/~sjplimp/lammps.html

fix nve command

Syntax:

fix ID group−ID nve

ID, group−ID are documented in fix command•
nve = style name of this fix command•

Examples:

fix 1 all nve

Description:

Perform constant NVE updates of position and velocity for atoms in the group each timestep. V is volume; E
is energy. This creates a system trajectory consistent with the microcanonical ensemble.

Restrictions: none

Related commands:

fix nvt, fix npt

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve/gran command

Syntax:

fix ID group−ID nve/gran

ID, group−ID are documented in fix command•
nve/gran = style name of this fix command•

Examples:

fix 1 all nve/gran

Description:

Perform constant NVE updates each timestep on a group of atoms of atom style granular. V is volume; E is
energy. Granular atoms store rotational information as well as position and velocity, so this integrator updates
translational and rotational degrees of freedom due to forces and torques.

Restrictions: none

Can only be used with atom_style granular.

fix nve command 121

http://www.cs.sandia.gov/~sjplimp/lammps.html

Related commands:

atom_style granular

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nvt command

Syntax:

fix ID group−ID nvt Tstart Tstop Tdamp keyword value ...

ID, group−ID are documented in fix command•
nvt = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
zero or more keyword/value pairs may be appended to the args•
keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

•

Examples:

fix 1 all nvt 300.0 300.0 100.0
fix 1 all nvt 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectory
consistent with the canonical ensemble.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec
− see the units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoover
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the
Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non−zero
value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short run
and monitoring the temperature is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

By default the temperature is computed only on the atoms in the fix group using the default temperature style.
This can be changed by assigning a different temperature style to the fix via the fix_modify command.

Restrictions: none

fix nvt command 122

http://www.cs.sandia.gov/~sjplimp/lammps.html

Related commands:

fix nve, fix npt, fix temp/rescale, fix langevin, fix_modify

Default:

The keyword defaults are drag = 0.0.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix planeforce command

Syntax:

fix ID group−ID planeforce x y z

ID, group−ID are documented in fix command•
lineforce = style name of this fix command•
x y z = 3−vector that is normal to the plane•

Examples:

fix hold boundary planeforce 1.0 0.0 0.0

Description:

Adjust the forces on each atom in the group so that it's motion will be in the plane specified by the normal
vector (x,y,z). This is done by subtracting out components of force perpendicular to the plane.

If the initial velocity of the atom is 0.0 (or in the plane), then it should continue to move in the plane
thereafter.

Restrictions: none

Related commands:

fix lineforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix rdf command

Syntax:

fix ID group−ID rdf N file Nbin itype1 jtype1 itype2 jtype2 ...

ID, group−ID are documented in fix command•
rdf = style name of this fix command•

fix planeforce command 123

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

N = compute radial distribution function (RDF) every this many timesteps•
file = filename to write radial distribution funtion info to•
Nbin = number of RDF bins•
itypeN = central atom type for RDF pair N•
jtypeN = distribution atom type for RDF pair N•

Examples:

fix 1 all rdf 500 rdf.out 100 1 1
fix 1 fluid rdf 10000 rdf.out 100 1 1 1 2 2 1 2 2

Description:

Compute the radial distribution function (RDF), also known as g(r), and coordination number every N steps.
The RDF for each specified atom type pair is histogrammed in Nbin bins from distance 0 to Rc, where Rc =
the maximum force cutoff for any pair of atom types. An atom pair only contributes to the RDF if

both atoms are in the fix group•
the distance between them is within the maximum force cutoff•
their interaction is stored in the neighbor list•

The latter will not be the case for bonded atoms (1−2, 1−3, 1−4 interactions within a molecular topology) if
the pairwise weighting factor set by the special_bonds command is 0.0 for the 2 atoms.

The RDF statistics for each timestep are written to the specified file, as are the RDF values averaged over all
timesteps.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
atom coordinates for atoms further away than that distance. If you want an RDF for larger r, you'll need to
post−process a dump file.

Related commands:

pair_style

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix rigid

Syntax:

fix ID group−ID rigid keyword values

ID, group−ID are documented in fix command•
rigid = style name of this fix command•
keyword = single or molecule or group•

fix rigid 124

http://www.cs.sandia.gov/~sjplimp/lammps.html

single values = none
molecule values = none
group values = list of group IDs

Examples:

fix 1 clump rigid single
fix 1 polychains rigid molecule
fix 2 fluid rigid group clump1 clump2 clump3

Description:

Treat one or more sets of atoms as a rigid body. This means that each timestep the total force and torque on
the rigid body is computed and the coordinates and velocities of the atoms are updated so that they move as a
rigid body. This can be useful for freezing one or more portions of a large biomolecule, or for simulating a
system of colloidal particles.

This fix updates the positions and velocities of the rigid atoms with a constant−energy time integration, so you
should not update the same atoms via other fixes (e.g. nve, nvt, npt, temp/rescale, langevin).

For single the entire group of atoms is treated as one rigid body.

For molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For group, each of the listed groups is treated as a separate rigid body. Note that only atoms that are also in
the fix group are included in each rigid body.

For computational efficiency, you should also turn off pairwise and bond interactions within each rigid body,
as they no longer contribute to the motion. The neigh_modify exclude and delete_bonds commands are used
to do this.

For computational efficiency, you should ideally define one rigid fix which includes all the desired rigid
bodies. LAMMPS will allow multiple rigid fixes to be defined, but it is more expensive.

The degrees−of−freedom removed by rigid bodies are accounted for in temperature and pressure
computations. Similary, the rigid body contribution to the pressure virial is also accounted for.

Restrictions:

This fix performs an MPI_Allreduce each timestep that is proportional in length to the number of rigid bodies.
Hence it will not scale well in parallel if large numbers of rigid bodies are simulated.

If the atoms in a single rigid body initially straddle a periodic boundary, the input data file must define the
image flags for each atom correctly, so that LAMMPS can "unwrap" the atoms into a valid rigid body.

Because this fix uses constant−energy integration, it means you cannot easily control the temperature of an
ensemble of rigid bodies. You can try to use other fixes (langevin, temp/rescale) for this purpose, but the
effects are not always satisfactory. If you are simulating a system that also contains non−rigid atoms (e.g.
solvent), then you can thermostat those atoms and hope they will couple to the rigid bodies. The right solution
is probably to enhance this fix to allow for direct temperature control of the rigid bodies.

Related commands:

fix rigid 125

delete_bonds, neigh_modify exclude

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix setforce command

Syntax:

fix ID group−ID setforce fx fy fz

ID, group−ID are documented in fix command•
setforce = style name of this fix command•
fx,fy,fz = force component values•

Examples:

fix freeze indenter setforce 0.0 0.0 0.0
fix 2 edge setforce NULL 0.0 0.0

Description:

Set each component of force on each atom in the group to the specified values fx,fy,fz. This erases all
previously computed forces on the atom, though additional fixes could add new forces. This command can be
used to freeze certain atoms in the simulation by zeroing their force, assuming their initial velocity zero.

Any of the fx,fy,fz values can be specified as NULL which means do not alter the force component in that
dimension.

Restrictions: none

Related commands:

fix addforce, fix aveforce

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix shake style

Syntax:

fix ID group−ID shake tol iter N keyword values ...

ID, group−ID are documented in fix command•
shake = style name of this fix command•
tol = accuracy tolerance of SHAKE solution•
iter = max # of iterations in each SHAKE solution•
N = print SHAKE statistics every this many timesteps (0 = never)•

fix setforce command 126

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

one or more keyword/value pairs are appended•
keyword = b or a or t or m

b values = one or more bond types
a values = one or more angle types
t values = one or more atom types
m value = one or more mass values

•

Examples:

fix 1 sub shake 0.0001 20 10 b 4 19 4 a 3 5 2
fix 1 sub shake 0.0001 20 10 t 4 6 4 m 1.0 a 31

Description:

Apply bond and angle constraints to specified bonds and angles in the simulation. This typically enables a
longer timestep.

Each timestep the specified bonds and angles are reset to their equilibrium lengths and angular values. This is
done by applying an additional constraint force so that the new positions preserve the desired atom
separations. The equations for the additional force are solved via an iterative method that typically converges
to an accurate solution in a few iterations. The desired tolerance (e.g. 1.0e−4 = 1 part in 10000) and maximum
of iterations are specified as arguments. Setting the N argument will print statistics to the screen and log file
about regarding the lengths of bonds and angles that are being constrained. Small delta values mean SHAKE
is doing a good job.

In LAMMPS, only small clusters of atoms can be constrained. This is so the constraint calculation for a
cluster can be performed by a single processor, to enable good parallel performance. A cluster is defined as a
central atom connected to others in the cluster by constrained bonds. LAMMPS allows for the following kinds
of clusters to be constrained: one central atom bonded to 1 or 2 or 3 atoms, or one central atom bonded to 2
others and the angle between the 3 atoms also constained. This means water molecules or CH2 or CH3 groups
may be constrained, but not all the C−C backbone bonds of a long polymer chain.

The b keyword lists bond types that will be constrained. The t keyword lists atom types. All bonds connected
to an atom of the specified type will be constrained. The m keyword lists atom masses. All bonds connected to
atoms of the specified masses will be constrained (within a fudge factor of MASSDELTA specified in
fix_shake.cpp). The a keyword lists angle types. If both bonds in the angle are constrained then the angle will
also be constrained if its type is in the list.

For all keywords, a particular bond is only constrained if both atoms in the bond are in the group specified
with the SHAKE fix.

The degrees−of−freedom removed by SHAKE bonds and angles are accounted for in temperature and
pressure computations. Similary, the SHAKE contribution to the pressure virial is also accounted for.

Restrictions:

For computational efficiency, there can only be one shake fix defined in a simulation.

If you use a tolerance that is too large or a max−iteration count that is too small, the constraints will not be
enforced very strongly, which can lead to poor energy conservation. You can test for this in your system by
running a constant NVE simulation with a particular set of SHAKE parameters and monitoring the energy

fix setforce command 127

versus time.

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix spring command

Syntax:

fix ID group−ID spring keyword values

ID, group−ID are documented in fix command•
spring = style name of this fix command•
keyword = tether or couple

tether values = K x y z R0
 K = spring constant (force/distance units)
 x,y,z = point to which spring is tethered
 R0 = equilibrium distance from tether point (distance units)

couple values = group−ID1 group−ID2 K x y z R0
 group−ID1,group−ID2 = two groups to couple together with a spring
 K = spring constant (force/distance units)
 x,y,z = direction of spring
 R0 = equilibrium distance of spring (distance units)

•

Examples:

fix pull ligand spring tether 50.0 0.0 0.0 0.0 0.0
fix pull ligand spring tether 50.0 0.0 0.0 0.0 5.0
fix pull ligand spring tether 50.0 NULL NULL 2.0 3.0
fix 5 lipids spring couple bilayer1 bilayer2 100.0 NULL NULL 10.0 0.0
fix longitudinal all spring couple pore ion 100.0 NULL NULL −20.0 0.0
fix radial all spring couple pore ion 100.0 0.0 0.0 NULL 5.0

Description:

Apply a spring force to a group of atoms or between two groups of atoms. This is useful for applying an
umbrella force to a small molecule or lightly tethering a large group of atoms (e.g. all the solvent or a large
molecule) to the center of the simulation box so that it doesn't wander away over the course of a long
simulation. It can also be used to hold the centers of mass of two groups of atoms at a given distance or
orientation with respect to each other.

The tether style attaches a spring between a fixed point x,y,z and the center of mass of the fix group of atoms.
The equilibrium position of the spring is R0. At each timestep the distance R from the center of mass of the
group of atoms to the tethering point is computed, taking account of wrap−around in a periodic simulation
box. A restoring force of magnitude K (R − R0) Mi / M is applied to each atom in the group where K is the
spring constant, Mi is the mass of the atom, and M is the total mass of all atoms in the group. Note that K thus
represents the total force on the group of atoms, not a per−atom force.

The couple style links two groups of atoms together. Only atoms that are also in the fix group are considered

fix spring command 128

http://www.cs.sandia.gov/~sjplimp/lammps.html

to be part of either of the groups. The groups are coupled together by a spring that is at equilibrium when the
two groups are displaced by a vector x,y,z with respect to each other and at a distance R0 from that
displacement. Note that x,y,z is the equilibrium displacement of group 2 relative to group 1. Thus (1,1,0) is a
different spring than (−1,−1,0). When the relative positions and distance between the two groups are not in
equilibrium, the same spring force described above is applied to atoms in each of the two groups.

For both the tether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

The first example above pulls the ligand towards the point (0,0,0). The second example holds the ligand near
the surface of a sphere of radius 5 around the point (0,0,0). The third example holds the ligand a distance 3
away from the z=2 plane (on either side).

The fourth example holds 2 bilayers a distance 10 apart in z. For the last two examples, imagine a pore (a slab
of atoms with a cylindrical hole cut out) oriented with the pore axis along z, and an ion moving within the
pore. The fifth example holds the ion a distance of −20 below the z = 0 center plane of the pore (umbrella
sampling). The last example holds the ion a distance 5 away from the pore axis (assuming the center−of−mass
of the pore in x,y is the pore axis).

Restrictions: none

Related commands:

fix drag

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix temp/rescale command

Syntax:

fix ID group−ID temp/rescale Tstart Tstop N window fraction

ID, group−ID are documented in fix command•
temp/rescale = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
N = perform rescaling every N steps•
window = only rescale if temperature is outside this window (temperature units)•
fraction = rescale to target temperature by this fraction•

Examples:

fix 3 flow temp/rescale 1.0 1.1 100 0.02 0.5

Description:

Reset the temperature of a group of atoms by explicitly rescaling their velocities. The target temperature is a
ramped value between the Tstart and Tstop temperatures at the beginning and end of the run.

fix temp/rescale command 129

http://www.cs.sandia.gov/~sjplimp/lammps.html

Rescaling is only performed every N timesteps, and only if the difference between the current and desired
temperatures is greater than the window value. The amount of rescaling that is applied is a fraction (from 0.0
to 1.0) of the difference between the actual and desired temeperature. E.g. if fraction = 1.0, the temperature is
reset to exactly the desired value.

The way that temperature is computed by this fix can be changed by using the fix_modify command.

A temp/rescale fix does not update the coordinates of its atoms. It is normally used with a fix of style nve that
does that. A temp/rescale fix should not normally be used on atoms that also have their temperature controlled
by another fix − e.g. a nvt or langevin fix.

Restrictions: none

Related commands:

fix langevin, fix nvt, fix_modify

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix tmd command

Syntax:

fix ID group−ID tmd rho_final file1 N file2

ID, group−ID are documented in fix command•
tmd = style name of this fix command•
rho_final = desired value of rho at the end of the run (distance units)•
file1 = filename to read target structure from•
N = dump TMD statistics every this many timesteps, 0 = no dump•
file2 = filename to write TMD statistics to (only needed if N > 0)•

Examples:

fix 1 all nve
fix 2 tmdatoms tmd 1.0 target_file 100 tmd_dump_file

Description:

Perform targeted molecular dynamics (TMD) on a group of atoms. A holonomic constraint is used to force the
atoms to move towards (or away from) the target configuration. The parameter "rho" is monotonically
decreased (or increased) from its initial value to rho_final at the end of the run. Rho has distance units and is a
measure of the root−mean−squared distance (RMSD) between the current configuration of the atoms in the
group and the target coordinates listed in file1. Thus a value of rho_final = 0.0 means move the atoms all the
way to the final structure during the course of the run.

The format of the target file1 is as follows:

 0.0 25.0 xlo xhi

fix tmd command 130

http://www.cs.sandia.gov/~sjplimp/lammps.html

 0.0 25.0 ylo yhi
 0.0 25.0 zlo zhi
 125 24.97311 1.69005 23.46956 0 0 −1
 126 1.94691 2.79640 1.92799 1 0 0
 127 0.15906 3.46099 0.79121 1 0 0
 ...

The first 3 lines may or may not be needed, depending on the format of the atoms to follow. If image flags are
included with the atoms, the 1st 3 lo/hi lines must appear in the file. If image flags are not included, the 1st 3
lines should not appear. The 3 lines contain the simulation box dimensions for the atom coordinates, in the
same format as in a LAMMPS data file (see the read_data command).

The remaining lines each contain an atom ID and its target x,y,z coordinates. The atom lines (all or none of
them) can optionally be followed by 3 integer values: nx,ny,nz. For periodic dimensions, they specify which
image of the box the atom is considered to be in, i.e. a value of N (positive or negative) means add N times the
box length to the coordinate to get the true value.

The atom lines can be listed in any order, but every atom in the group must be listed in the file. Atoms not in
the fix group may also be listed; they will be ignored.

TMD statistics are written to file2 every N timesteps, unless N is specified as 0, which means no statistics.

The atoms in the fix tmd group should be integrated (via a fix nve, nvt, npt) along with other atoms in the
system.

Restarts can be used with a fix tmd command. For example, imagine a 10000 timestep run with a rho_initial =
11 and a rho_final = 1. If a restart file was written after 2000 time steps, then the configuration in the file
would have a rho value of 9. A new 8000 time step run could be performed with the same rho_final = 1 to
complete the conformational change at the same transition rate. Note that for restarted runs, the name of the
TMD statistics file should be changed to prevent it being overwritten.

For more information about TMD, see (Schlitter1) and (Schlitter2).

Restrictions:

All TMD fixes must be listed in the input script after all integrator fixes (nve, nvt, npt) are applied. This
ensures that atoms are moved before their positions are corrected to comply with the constraint.

Atoms that have a TMD fix applied should not be part of a group to which a SHAKE fix is applied. This is
because LAMMPS assumes there are not multiple competing holonomic constraints applied to the same
atoms.

Related commands: none

Default: none

(Schlitter1) Schlitter, Swegat, Mulders, "Distance−type reaction coordinates for modelling activated
processes", J Molecular Modeling, 7, 171−177 (2001).

fix tmd command 131

(Schlitter2) Schlitter and Klahn, "The free energy of a reaction coordinate at multiple constraints: a concise
formulation", Molecular Physics, 101, 3439−3443 (2003).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix viscous command

Syntax:

fix ID group−ID viscous coeff

ID, group−ID are documented in fix command•
viscous = style name of this fix command•
coeff = damping coefficient (unitless)•

Examples:

fix 1 flow viscous 0.1

Description:

Add a viscous damping force to atoms in the group that is proportional to the velocity of the atom. This is
useful for draining the kinetic energy from the system in a controlled fasion. The damping force F is given by
F = − coeff * velocity. The larger the coefficient, the faster the kinetic energy is reduced.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix volume/rescale command

Syntax:

fix ID group−ID volume/rescale N keyword args ...

ID, group−ID are documented in fix command•

volume/rescale = style name of this fix command•
N = perform volume rescaling every this many timesteps•
one or more keyword/value pairs may be appended to the args•
keyword = x or y or z

x, y, z args = lo,hi = desired simulation box boundaries
 at end of run

Examples:

•

fix viscous command 132

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

fix 1 all volume/rescale 100 x −9.0 9.0 z −5.0 5.0

Description:

Enable a volume (density) change during a simulation. Each of the 3 box dimensions is controlled
separately. Any dimension being varied by this command must be periodic − see the boundary command.
Dimensions not varied by this command can be periodic or non−periodic. The volume associated with an
unspecified dimension can also be controlled by a fix npt command.

The initial simulation box boundaries at the beginning of a run are specified by the create_box or read_data
or read_restart command used to setup the simulation, or they are the values at the end of the previous run.
The desired simulation box boundaries at the end of the run are given by the lo and hi arguments. Every
Nth timestep during the run, the simulation box is expanded or contracted to an ramped value between the
initial and final values. The coordinates of all atoms in the group are also scaled to the new box size.

Restrictions:

Any dimension being varied by this fix must be periodic.

Related commands: none

Default: none
LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/gran command

Syntax:

fix ID group−ID wall/gran wallstyle args keyword values ...

ID, group−ID are documented in fix command•
wall/gran = style name of this fix command•
style = xplane or yplane or zplane or zcylinder•
args = list of arguments for a particular style

xplane or yplane or zplane args = lo hi gamma xmu
 lo, hi = position of lower and upper plane (either can be NULL)
 gamman = damping coeff for normal direction collisions with wall
 xmu = friction coeff for the wall

zcylinder args = radius gamma xmu
 radius = cylinder radius (distance units)
 gamman = damping coeff for normal direction collisions with wall
 xmu = friction coeff for the wall

•

zero or more keyword/value pairs may be appended to args

 keyword = wiggle
 values = dim amplitude period
 dim = x or y or z
 amplitude = size of oscillation (distance units)
 period = time of oscillation (time units)

•

Examples:

fix wall/gran command 133

http://www.cs.sandia.gov/~sjplimp/lammps.html

fix 1 all wall/gran xplane −10.0 10.0 50.0 0.5
fix 2 all wall/gran zcylinder 15.0 50.0 0.5 wiggle z 3.0 2.0
fix 1 all wall/gran zplane 0.0 NULL 100.0 0.5

Description:

Bound the simulation domain of a granular system with a frictional wall. All particles in the group interact
with the wall when they are close enough to touch it.

The wallstyle can be planar or cylindrical. The 3 planar options specify a pair of walls in a dimension. Wall
positions are given by lo and hi. Either of the values can be specified as NULL if a single wall is desired. For
a zcylinder wallstyle, the cylinder's axis is at x = y = 0.0, and the radius of the cylinder is specified. For all
wallstyles, a damping and friction coefficient for particle−wall interactions are also specified.

Optionally, a wall can be oscillated, similar to the oscillations of frozen particles specified by the fix_wiggle
command. This is useful in packing simulations of granular particles. If the keyword wiggle is appended to the
argument list, then a dimension for the motion, as well as it's amplitude and period is specified. Each
timestep, the position of the wall in the appropriate dim is set according to this equation:

position = pos0 + A − A cos (omega * delta)

where pos0 is the position at the time the fix was specified, A is the amplitude, omega is 2 PI / period, and
delta is the elapsed time since the fix was specified. The velocity of the wall is also set to the derivative of this
expression.

Restrictions:

A zcylinder wall can only be oscillated in the z dimension. This fix can only be used with atom_style
granular.

Related commands:

fix_wiggle

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/93 command

Syntax:

fix ID group−ID wall/lj93 style coord epsilon sigma cutoff

ID, group−ID are documented in fix command•
wall/lj93 = style name of this fix command•
style = xlo or xhi or ylo or yhi or zlo or zhi•
coord = position of wall•
epsilon = Lennard−Jones epsilon for wall−particle interaction•
sigma = Lennard−Jones sigma for wall−particle interaction•
cutoff = distance from wall at which wall−particle interaction is cut off•

fix wall/93 command 134

http://www.cs.sandia.gov/~sjplimp/lammps.html

Examples:

fix wallhi all wall/lj93 xhi 10.0 1.0 1.0 1.12

Description:

Bound the simulation domain with a Lennard−Jones wall that encloses the atoms. The energy E of a
wall−particle interactions is given by the 9−3 potential

where r is the distance from the particle to the wall coord, and epsilon and sigma are the usual LJ parameters.
Rc is the cutoff value specified in the command. This interaction is derived by integrating over a 3d
half−lattice of Lennard−Jones 12−6 particles.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wiggle command

Syntax:

fix ID group−ID wiggle dim amplitude period

ID, group−ID are documented in fix command•
wiggle = style name of this fix command•
dim = x or y or z•
amplitude = size of oscillation (distance units)•
period = time of oscillation (time units)•

Examples:

fix 1 frozen wiggle 3.0 0.5

Description:

Move a group of atoms in a sinusoidal oscillation. This is useful in granular simulations when boundary atoms
are wiggled to induce packing of the dynamic atoms. The dimension dim of movement is specified as is the
amplitude and period of the oscillations. Each timestep the dim coordinate of each atom is set to

coord = coord0 + A − A cos (omega * delta)

fix wiggle command 135

http://www.cs.sandia.gov/~sjplimp/lammps.html

where coord0 is the coordinate at the time the fix was specified, A is the amplitude, omega is 2 PI / period,
and delta is the elapsed time since the fix was specified. The velocity of the atom is set to the derivative of
this expression.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

group command

Syntax:

group ID style args

ID = user−defined name of the group•
style = region or type or id or molecule or subtract or union or intersect

region args = region−ID
type or id or molecule

 args = one or more atom types, atom IDs, or molecule IDs
 args = logical value
 logical = "" or ">="
 value = an atom type or atom ID or molecule ID (depending on style)
 args = logical value1 value2
 logical = ""
 value1,value2 = atom types or atom IDs or molecule IDs
 (depending on style)

subtract args = two or more group IDs
union args = one or more group IDs
intersect args = two or more group IDs

•

Examples:

group edge region regstrip
group water type 3 4
group sub id <= 150
group polyA molecule 50 250
group boundary subtract all a2 a3
group boundary union lower upper
group boundary intersect upper flow

Description:

Identify a collection of atoms as belonging to a group. The group ID can then be used in other commands such
as fix, velocity, dump, or temperature to act on the atoms together.

If the group ID already exists, the group command adds the specified atoms to the group.

The region style puts all atoms in the region volume into the group. Note that this is a static one−time
assignment. The atoms remain assigned (or not assigned) to the group even in they later move out of the

group command 136

http://www.cs.sandia.gov/~sjplimp/lammps.html

region volume.

The type, id, and molecule styles put all atoms with the specified atom types, atom IDs, or molecule IDs into
the group. These 3 styles can have their arguments specified in one of two formats. The 1st format is a list of
values (types or IDs). For example, the 2nd command in the examples above, puts all atoms of type 3 or 4 into
the group named water. The 2nd format is a logical followed by one or two values (type or ID). The 5 valid
logicals are listed above. All the logicals except take a single argument. The 3rd example above adds all atoms
with IDs from 1 to 150 to the group named sub. The logical means "between" and takes 2 arguments. The 4th
example above adds all atoms belonging to molecules with IDs from 50 to 250 (inclusive) to the group named
polyA.

The subtract style takes a list of two or more existing group names as arguments. All atoms that belong to the
1st group, but not to any of the other groups are added to the specified group.

The union style takes a list of one or more existing group names as arguments. All atoms that belong to any of
the listed groups are added to the specified group.

The intersect style takes a list of two or more existing group names as arguments. Atoms that belong to every
one of the listed groups are added to the specified group.

A group with the ID all is predefined. All atoms belong to this group.

Restrictions:

There can be no more than 32 defined groups, including "all".

Related commands:

region, fix, velocity, dump, temperature

Default:

All atoms belong to the "all" group.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_coeff command

Syntax:

improper_coeff N args

N = improper type (see asterik form below)•
args = coefficients for one or more improper types•

Examples:

improper_coeff 1 300.0 0.0
improper_coeff * 80.2 −1 2
improper_coeff *4 80.2 −1 2

improper_coeff command 137

http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Specify the force field coefficients for one or more improper types. The number and meaning of the
coefficients depends on the improper style. As described below, improper coefficients can also be set in the
data file read by the read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the coefficients for multiple improper types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of improper types, then an asterik with no numeric values means all
types from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types
from n to N (inclusive). A middle asterik means all types from m to n (inclusive).

Note that using 2 improper_coeff commands for the same improper type is perfectly valid. For example, these
commands set the coeffs for all improper types, then overwrite the coeffs for just improper type 2:

improper_coeff * 300.0 0.0
improper_coeff 2 50.0 0.0

A line in a data file that specifies improper coefficients uses the exact same format as the arguments of the
improper_coeff command in an input script, except that wild−card asteriks should not be used since
coefficients for all N types are listed in the file. For example, under the "Improper Coeffs" section of a data
file, the line that corresponds to the 1st example above would be listed as

1 300.0 0.0

See the improper_style command for more discussion of the formulas that use these coefficients. The units of
each coefficient are shown in parenthesis.

For style class2, only coefficients for the Ei formula can be specified in the input script. These are the 2
coefficients:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Coefficients for the Eaa formula must be specified in the data file. For the Eaa formula, the coefficients are
listed under a "AngleAngle Coeffs" heading and each line lists 6 coefficients:

M1 (energy/distance)•
M2 (energy/distance)•

improper_coeff command 138

M3 (energy/distance)•
theta1 (degrees)•
theta2 (degrees)•
theta3 (degrees)•

The theta values are specified in degrees, but LAMMPS converts them to radians internally; hence the units of
M are in energy/radian^2.

For style cvff, specify 3 coefficients:

K (energy)•
d (+1 or −1)•
n (0,1,2,3,4,6)•

For style harmonic, specify 2 coefficients:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An improper style must be defined before any improper coefficients are set, either in the input script or in a
data file.

Related commands:

improper_style

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_coeff command 139

http://www.cs.sandia.gov/~sjplimp/lammps.html

improper_style command

Syntax:

improper_style style

style = none or class2 or cvff or harmonic•

Examples:

improper_style harmonic
improper_style cvff

Description:

Set the formula LAMMPS will use to compute improper interactions between quadruplets (trigonal centers) of
atoms. The list of atom quadruplets is specified in the data or restart file and is read in by a read_data or
read_restart command. The coefficients for the formula for each improper type can also be specified in those
files or by the improper_coeff command.

A style of none means improper forces are not computed, even if impropers are defined.

The class2 style uses the potential

where Ei is the improper term and Eaa is an angle−angle term. The chi used in Ei is an average over 3
possible chi orientations. The subscripts on the various theta's refer to different combinations of atoms i,j,k,l
used to form the angle; theta1, theta2, theta3 are the equilibrium positions of those angles. K, Mn, chi0,
theta1, theta2, and theta3 are coefficients defined for each improper type.

The cvff style uses the potential

where phi is the Wilson out−of−plane angle. K, d, and n are coefficients defined for each improper type.

The harmonic style uses the potential

improper_style command 140

where X is the improper angle, X0 is its equilibrium value, and K is a prefactor. Note that the usual 1/2 factor
is included in K. K and X0 are coefficients defined for each improper type.

Restrictions:

Improper styles can only be set for atom_style choices that allow impropers to be defined.

Improper styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

improper_coeff

Default:

improper_style none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading LAMMPS commands from that file. When
the new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input
script A includes script B, and B includes A, then LAMMPS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

include command 141

http://www.cs.sandia.gov/~sjplimp/lammps.html

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

jump command

Syntax:

jump file

file = filename of new input script to switch to•

Examples:

jump newfile
jump in.run2

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
LAMMPS commands from that file. The original file is not returned to.

It is possible to chain from file to file or back to the original file using successive jump commands. If the
filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, include

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

kspace_modify command

Syntax:

kspace_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = mesh or order or gewald or slab

mesh value = x y z
 x,y,z = PPPM FFT grid size in each dimension

order value = N
 N = grid extent of Gaussian for PPPM mapping of each charge

gewald value = r
 r = PPPM G−ewald parameter

slab value = volfactor

•

jump command 142

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

 volfactor = ratio of the total extended volume used in the
 2d approximation compared with the volume of the simulation domain

Examples:

kspace_modify mesh 24 24 30 order 6
kspace_modify slab 3.0

Description:

Set parameters used by the kspace solvers defined by the kspace_style command. Not all parameters are
relevant to all kspace styles.

The mesh keyword sets the 3d FFT grid size for kspace style pppm. Each dimension must be factorizable into
powers of 2, 3, and 5. When this option is not set, the PPPM solver chooses its own grid size, consistent with
the user−specified accuracy and pairwise cutoff. Values for x,y,z of 0,0,0 unset the option.

The order keyword determines how many grid spacings an atom's charge extends when it is mapped to the
FFT grid in kspace style pppm. The default for this parameter is 5, which means each charge spans 5 grid cells
in each dimension.

The gewald keyword sets the value of the PPPM G−ewald parameter. Without this setting, LAMMPS chooses
the parameter automatically as a function of cutoff, precision, grid spacing, etc. This means it can vary from
one simulation to the next which may not be desirable for matching a KSpace solver to a pre−tabulated
pairwise potential. This setting can also be useful if PPPM fails to choose a good grid spacing and G−ewald
parameter automatically. If the value is set to 0.0, LAMMPS will choose the G−ewald parameter
automatically.

The slab keyword allows an Ewald or PPPM solver to be used for a systems that are periodic in x,y but
non−periodic in z − a boundary setting of "boundary p p f". This is done by treating the system as if it were
periodic in z, but inserting empty volume between atom slabs and removing dipole inter−slab interactions so
that slab−slab interactions are effectively turned off. The volfactor value sets the ratio of the extended
dimension in z divided by the actual dimension in z. The recommended value is 3.0. A larger value is
inefficient; a smaller value introduces unwanted slab−slab interactions. The use of fixed boundaries in z
means that the user must prevent particle migration beyond the initial z−bounds, typically by providing a
wall−style fix.

Restrictions: none

Related commands:

kspace_style, boundary

Default:

The option defaults are mesh = 0 0 0, order = 5, gewald = 0.0, and slab = 1.0.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

jump command 143

http://www.cs.sandia.gov/~sjplimp/lammps.html

kspace_style command

Syntax:

kspace_style style value

style = none or ewald or pppm

none value = none
ewald value = precision

 precision = desired accuracy
pppm value = precision

 precision = desired accuracy

•

Examples:

kspace_style pppm 1.0e−4
kspace_style none

Description:

Define a K−space solver for LAMMPS to use each timestep to compute long−range Coulombic interactions.
When such a solver is used in conjunction with an appropriate pair style, the cutoff for Coulombic interactions
is effectively infinite; each charge in the system interacts with charges in an infinite array of periodic images
of the simulation domain.

The ewald style performs an Ewald summation as described in any solid−state physics text. The pppm style
invokes a particle−particle particle−mesh solver (Hockney) which maps atom charge to a 3d mesh, uses 3d
FFTs to solve Poisson's equation on the mesh, then interpolates electric fields on the mesh points back to the
atoms. It is closely related to the particle−mesh Ewald technique (PME) (Darden) used in AMBER and
CHARMM. The cost of traditional Ewald summation scales as N^(3/2) where N is the number of atoms in the
system. The PPPM solver scales as Nlog(N) due to the FFTs, so it is almost always a faster choice (Pollock).

When a kspace style is used, a pair style that includes the short−range correction to the pairwise Coulombic
forces must also be selected. These styles are lj/cut/coul/long and lj/charmm/coul/long.

A precision value of 1.0e−4 means one part in 10000. This setting is used in conjunction with the pairwise
cutoff to determine the number of K−space vectors for style ewald or the FFT grid size for style pppm.

Restrictions:

A simulation must be 3d and periodic in all dimensions to use an Ewald or PPPM solver. The only exception
is if the slab option is set with kspace_modify, in which case the xy dimensions must be periodic and the z
dimension must be non−periodic.

Kspace styles are part of the "kspace" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

kspace_modify, pair_style lj/cut/coul/long, pair_style lj/charmm/coul/long

kspace_style command 144

Default:

kspace_style none

(Darden) Darden, York, Pedersen, J Chem Phys, 98, 10089 (1993).

(Hockney) Hockney and Eastwood, Computer Simulation Using Particles, Adam Hilger, NY (1989).

(Pollock) Pollock and Glosli, Comp Phys Comm, 95, 93 (1996).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

lattice command

Syntax:

lattice style value

style = none or sc or bcc or fcc or sq or sq2 or hex

none value = none
 for all other styles:
 value = reduced density (for LJ units)
 value = cubic lattice constant in Angstroms (for real or metal units)

•

Examples:

lattice fcc 3.52
lattice hex 0.85
lattice none

Description:

Define a lattice type and lattice constant. This is required before using a commands that (optionally) use the
lattice, such as create_atoms or region. The lattice type must be consistent with the dimension of the
simulation − see the dimension command. Styles sc or bcc or fcc are for 3d problems. Styles sq or sq2 or hex
are for 2d problems. Lattices of style fcc, bcc, sc, or hex are described in any solid−state physics text. A sq
lattice is one with atoms at the corners of a square. A sq2 lattice is a sq lattice with an additional atom at the
center of the square.

For unit style real or metal, the specified value is the cubic lattice constant in Angstroms. For unit style lj, the
value is the reduced density (rho*) which LAMMPS converts into a cubic lattice constant. For 3d problems,
the relationship "rho* = rho sigma^3" is used for the conversion, where rho = N/V with V = the volume of the
cubic cell and N = 4 for fcc, 2 for bcc, and 1 for sc (simple cubic) lattices. For 2d problems, the relationship
"rho* = rho sigma^2" is used for the conversion, where N = 2 for sq2 or hex and 1 for sq. In the hex case, the
unit cell is actually rectangular; it is extended by a factor of sqrt(3) in the y−dimension.

The command "lattice none" can be used to turn off the lattice setting. Any command that attempts to use a
lattice constant will then generate an error.

lattice command 145

http://www.cs.sandia.gov/~sjplimp/lammps.html

Restrictions: none

Related commands:

dimension, orient, origin, create_atoms, region

Default:

lattice none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.equil

Description:

This command closes the current LAMMPS log file, opens a new file with the specified name, and begins
logging information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors
do not attempt to write to the same log file.

The file "log.lammps" is the default log file for a LAMMPS run. The name of the initial log file can also be
set by the command−line switch −log. See this section for details.

Restrictions: none

Related commands: none

Default:

The default LAMMPS log file is named log.lammps

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

mass command

Syntax:

mass I value

log command 146

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

I = atom type (see asterik form below)•
value = mass•

Examples:

mass 1 1.0
mass * 62.5
mass 2* 62.5

Description:

Set the mass for all atoms of one or more atom types. Mass values can also be set in the read_data data file.
See the units command for what mass units to use.

I can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild−card asterik can be used to set the mass for multiple atom types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of atom types, then an asterik with no numeric values means all types from
1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types from n to N
(inclusive). A middle asterik means all types from m to n (inclusive).

A line in a data file that specifies mass uses the exact same format as the arguments of the mass command in
an input script, except that no wild−card asterik can be used. For example, under the "Masses" section of a
data file, the line that corresponds to the 1st example above would be listed as

1 1.0

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All masses must be defined before a simulation is run (if the atom style requires masses be set). They must
also all be defined before a velocity or fix shake command is used.

Masses are not set for atom style granular. This is because each atom is assigned an individual mass in the
data or restart file.

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

neigh_modify command

Syntax:

neigh_modify keyword values ...

one or more keyword/value pairs may be listed

keyword = delay or every or check or exclude or page or one

•

neigh_modify command 147

http://www.cs.sandia.gov/~sjplimp/lammps.html

delay value = N
 N = delay building until this many steps since last build

every value = M
 M = build neighbor list every this many steps

check value = yes or no
yes = only build if some atom has moved half the skin distance or more
no = always build on 1st step that every and delay are satisfied

exclude values:
 type M N
 M,N = exclude if one atom in pair is type M, other is type N
 group group1−ID group2−ID
 group1−ID,group2−ID = exclude if one atom is in 1st group, other in 2nd
 molecule group−ID
 groupname = exclude if both atoms are in the same molecule and in the same group
 none
 delete all exclude settings

page value = N
 N = number of pairs stored in a single neighbor page

one value = N
 N = max number of neighbors of one atom

Examples:

neigh_modify every 2 delay 10 check yes page 100000
neigh_modify exclude type 2 3
neigh_modify exclude group frozen frozen check no
neigh_modify exclude group residue1 chain3
neigh_modify exclude molecule rigid

Description:

This command sets parameters that affect the pairwise neighbor list.

The every, delay, and check options affect how often the list is built as a simulation runs. The delay setting
means never build a new list until at least N steps after the previous build. The every setting means build the
list every M steps (after the delay has passed). If the check setting is no, the list is built on the 1st step that
satisfies the delay and every settings. If the check setting is yes, then the list is only built on a particular step if
some atom has moved more than half the skin distance (specified in the neighbor command) since the last
build.

When the rRESPA integrator is used (see the run_style command), the every and delay parameters refer to the
longest (outermost) timestep.

The exclude option turns off pairwise interactions between certain pairs of atoms, by not including them in the
neighbor list. These are sample scenarios where this is useful:

In crack simulations, pairwise interactions can be shut off between 2 slabs of atoms to effectively
create a crack.

•

When a large collection of atoms is treated as frozen, interactions between those atoms can be turned
off to save needless computation. E.g. Using the fix setforce command to freeze a wall or portion of a
bio−molecule.

•

When one or more rigid bodies are specified, interactions within each body can be turned off to save
needless computation. See the fix rigid command for more details.

•

The exclude type option turns off the pairwise interaction if one atom is of type M and the other of type N. M

neigh_modify command 148

can equal N. The exclude group option turns off the interaction if one atom is in the first group and the other
is the second. Group1−ID can equal group2−ID. The exclude molecule option turns off the interaction if both
atoms are in the specified group and in the same molecule, as determined by their molecule ID.

Each of the exclude options can be specified multiple times. The exclude type option is the most efficient
option to use; it requries only a single check, no matter how many times it has been specified. The other
exclude options are more expensive if specified multiple times; they require one check for each time they
have been specified.

Note that the exclude options only affect pairwise interactions; see the delete_bonds command for information
on turning off bond interactions.

The page and one options affect how memory is allocated for the neighbor lists. For most simulations the
default settings for these options are fine, but if a very large problem is being run or a very long cutoff is
being used, these parameters can be tuned. The indices of neighboring atoms are stored in "pages", which are
allocated one after another as they fill up. The size of each page is set by the page value. A new page is
allocated when the next atom's neighbors could potentially overflow the list. This threshhold is set by the one
value which tells LAMMPS the maximum number of neighbor's one atom can have.

Restrictions:

If the "delay" setting is non−zero, then it must be a multiple of the "every" setting.

The exclude molecule option can only be used with atom styles that define molecule IDs.

Related commands:

neighbor, delete_bonds

Default:

The option defaults are delay = 10, every = 1, check = yes, exclude = none, page = 10000, and one = 2000.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

neighbor command

Syntax:

neighbor skin style

skin = extra distance beyond force cutoff (distance units)•
style = bin or nsq•

Examples:

neighbor 0.3 bin
neighbor 2.0 nsq

Description:

neighbor command 149

http://www.cs.sandia.gov/~sjplimp/lammps.html

This command sets parameters that affect the building of the pairwise neighbor list. All atom pairs within a
cutoff distance equal to the their force cutoff plus the skin distance are stored in the list. Typically, the larger
the skin distance, the less often neighbor lists need to be built, but more pairs must be checked for possible
force interactions every timestep.

The style value chooses what algorithm is used to build the list. Binning is an operation that scales linearly
with N, the number of atoms on a processor. It is almost always faster than the nsq style which scales as N^2.
For unsolvated small molecules in a non−periodic box, the nsq choice can sometimes be faster. Either style
should give the same answers.

The default values for skin and style depend on the choice of units for the simulation.

The neigh_modify command has additional options that control how often neighbor lists are built and which
pairs are stored in the list.

When a run is finished, counts of the number of neighbors stored in the pairwise list and the number of times
neighbor lists were built are printed to the screen and log file. See this section for details.

Restrictions: none

Related commands:

neigh_modify, units

Default:

0.3 bin for lj units
2.0 bin for real or metal units

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

newton command

Syntax:

newton flag
newton flag1 flag2

flag = on or off for both pairwise and bonded interactions•
flag1 = on or off for pairwise interactions•
flag2 = on or off for bonded interactions•

Examples:

newton off
newton on off

Description:

This command turns Newton's 3rd law on or off for pairwise and bonded interactions. For most problems,
setting Newton's 3rd law to on means a modest savings in computation at the cost of two times more

newton command 150

http://www.cs.sandia.gov/~sjplimp/lammps.html

communication. Whether this is faster depends on problem size, force cutoff lengths, a machine's
compute/communication ratio, and how many processors are being used.

Setting the pairwise newton flag to off means that if two interacting atoms are on different processors, both
processors compute their interaction and the resulting force information is not communicated. Similarly, for
bonded interactions, newton off means that if a bond, angle, dihedral, or improper interaction contains atoms
on 2 or more processors, the interaction is computed by each processor.

LAMMPS should produce the same answers for any newton flag settings, except for round−off issues.

With run_style respa and only bonded interactions (bond, angle, etc) computed in the innermost timestep, it
may be faster to turn newton off for bonded interactions, to avoid extra communication in the innermost loop.

Restrictions:

The newton bond setting cannot be changed after the simulation box is defined by a read_data or create_box
command.

Related commands:

run_style respa

Default:

newton on

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

next command

Syntax:

next variables

variables = one or more lower−case single−character variable names•

Examples:

next x
next a t x

Description:

This command is used with variables of the index style as defined by the variable command. It sets the value
of the variable to the next argument in the variable list, so that when $X is substituted for in an input script
line, the new value is used. X is a single lower−case character from "a" to "z".

The behavior of the next command depends on whether LAMMPS is running on a single partition or multiple
partitions. See this section for a discussion of the −partition command−line switch.

next command 151

http://www.cs.sandia.gov/~sjplimp/lammps.html

If all processors are in one partition, then occurences of $X are substituted for on all processors. Initially the
variable is set to the 1st argument. After a next command is invoked for variable X, the 2nd argument is used
in substitutions for $X, etc. For example, an input script in.polymer could use these commands to run a series
of 8 simulations from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
cd $d
read_data data.polymer
run 10000
cd ..
clear
next d
jump in.polymer

When the next command increments an index style variable past its final value, LAMMPS exits. This prevents
scripts, like the example just given, from looping endlessly.

When LAMMPS is running on multiple partitions, a variable command for an index style variable assigns a
different value to each partition. I.e. on 4 partitions, the first 4 values of the variable are assigned, one to each
partition. When a next command is encountered, the first partition to invoke the command assigns the next
available argument to the variable. A partition which invokes the next command later in time will assign the
next available value, etc. If you have several variables that must be incremented simultaneously in this
fashion, list them as arguments to a single next commmand.

On 3 partitions, the same in.polymer script above would run the 8 simulations on 3 sets of processors.
Whenever a partition finishes one simulation it will set the variable d to the next available value and run
another simulation. When all 8 simulations finish on whatever partitions they ran on, LAMMPS will exit.

To coordinate the variable usage between multiple partitions, LAMMPS creates a temporary file,
lammps.variable, with information about variable status. This file should not be deleted or modified while
LAMMPS is running.

Restrictions: none

Related commands:

variable, jump, include

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

orient command

Syntax:

orient dim i j k

dim = x or y or z•
i,j,k = orientation of lattice that is along box direction dim•

Examples:

orient command 152

http://www.cs.sandia.gov/~sjplimp/lammps.html

orient x 1 1 0
orient y −1 1 0
orient z 0 0 1

Description:

Specify the orientation of a cubic lattice along simulation box directions x or y or z. These 3 basis vectors are
used when the create_atoms command generates a lattice of atoms.

The 3 basis vectors B1, B2, B3 must be mutually orthogonal and form a right−handed system such that B1
cross B2 is in the direction of B3.

The basis vectors should be specified in an irreducible form (smallest possible integers), though LAMMPS
does not check for this.

Restrictions: none

Related commands:

origin, create_atoms

Default:

orient x 1 0 0
orient y 0 1 0
orient z 0 0 1

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

origin command

Syntax:

origin x y z

x,y,z = origin of a lattice•

Examples:

origin 0.0 0.5 0.5

Description:

Set the origin of the lattice defined by the lattice command. The lattice is used by the create_atoms command
to create new atoms and by other commands that use a lattice spacing as a distance measure. This command
offsets the origin of the lattice from the (0,0,0) coordinate of the simulation box by some fraction of a lattice
spacing in each dimension.

The specified values are in lattice coordinates from 0.0 to 1.0, so that a value of 0.5 means the lattice is
displaced 1/2 a cubic cell.

Restrictions: none

origin command 153

http://www.cs.sandia.gov/~sjplimp/lammps.html

Related commands:

lattice, orient

Default:

origin 0 0 0

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_coeff command

Syntax:

pair_coeff I J args

I,J = atom types (see asterik form below)•
args = coefficients for one or more pairs of atom types•

Examples:

pair_coeff 2 2 1.0 1.0 2.5
pair_coeff 2 * 1.0 1.0
pair_coeff 3* 1*2 1.0 1.0 2.5
pair_coeff * * 1.0 1.0
pair_coeff 2 2 niu3
pair_coeff * * nialhjea 1 1 2
pair_coeff * 3 morse.table ENTRY1
pair_coeff 1 2 lj/cut 1.0 1.0 2.5

Description:

Specify the pairwise force field coefficients for one or more pairs of atom types. The number and meaning of
the coefficients depends on the pair style. Pair coefficients can also be set in the data file read read_data
command or in a restart file.

I and J can be specified in one of two ways. Explicit numeric values can be used for each, as in the 1st
example above. In this case, I <= J is required. LAMMPS sets the coefficients for the symmetric J,I
interaction to the same values.

A wild−card asterik can be used with the I,J arguments to set the coefficients for multiple pairs of atom types.
This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterik with no
numeric values means all types from 1 to N. A leading asterik means all types from 1 to n (inclusive). A
trailing asterik means all types from n to N (inclusive). A middle asterik means all types from m to n
(inclusive). Note that only type pairs with I <= J are set; if asteriks imply type pairs where J < I, they are
ignored.

Note that using 2 pair_coeff commands for the same I,J pair is perfectly valid. For example, these commands
set the coeffs for all I,J pairs, then overwrite the coeffs for just the I,J = 2,3 pair:

pair_coeff * * 1.0 1.0 2.5
pair_coeff 2 3 2.0 1.0 1.12

pair_coeff command 154

http://www.cs.sandia.gov/~sjplimp/lammps.html

A line in a data file that specifies pair coefficients uses the exact same format as the arguments of the
pair_coeff command in an input script, with the exception of the I,J type arguments. In each line of the "Pair
Coeffs" section of a data file, only a single type I is specified, which sets the coefficients for type I interacting
with type I. This is because the section has exactly N lines, where N = the number of atom types. For this
reason, the wild−card asterik should also not be used as part of the I argument. Thus in a data file, the line
corresponding to the 1st example above would be listed as

2 1.0 1.0 2.5

If coefficients for type pairs with I not equal J are not set explicity by a pair_coeff command, they are inferred
from the I,I and J,J settings by mixing rules; see the pair_modify command for a discussion.

Here are the coefficients specified by the pair_coeff command for each pair style. Note that when allowed,
cutoff arguments are optional; if they are specified for a particular I,J pair they override the global cutoff(s)
specified by the pair_style command.

The units of each coefficient are shown in parenthesis.

For styles buck, buck/coul/cut, and buck/coul/long, specify 3, 4, or 5 coefficients:

A (energy units)•
rho (distance units)•
C (energy−distance^6 units)•
cutoff (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs are used. If only
one cutoff is specified, it is used as the cutoff for both LJ and Coulombic interactions for this type pair. If both
coefficients are specified, they are used as the LJ and Coulombic cutoffs for this type pair.

For buck/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

The dipole styles are not yet implemented in LAMMPS. They will enable a point dipole and charge to be
assigned to each atom and the resulting charge−dipole and dipole−dipole interactions to be computed.

For style eam, coefficients are listed in one of two forms, depending on whether single−element or
multi−element DYNAMO potential files are used (funfl or setfl files in DYNAMO lingo). The 2 types of files
cannot be mixed in the same simulation.

pair_coeff command 155

Note that unlike for other potentials, you do not set cutoffs for EAM potentials in the pair_style or pair_coeff
command; they are defined in the EAM potential files.

For the single−element case (funcfl), you must assign a potential file to each I,I pair of atom types by using a
single pair_coeff argument:

filename•

Thus the following command

pair_coeff *2 1*2 cuu3

will read the cuu3 potential file and use the tabulated Cu values for F, rho, phi that it contains for type pairs
1,1 and 2,2 (type pairs 1,2 and 2,1 are ignored). In effect, this makes atom types 1 and 2 in LAMMPS be Cu
atoms. Different single−element files can be assigned to different atom types to model an alloy system. The
mixing of alloy potentials for type pairs with I < J is done automatically; you do not need to specify
coefficients for these type pairs.

For the multi−element case (setfl), only one pair_coeff command can be used (one file). DYNAMO setfl files
contain information for M elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename, where N is the number of LAMMPS atom types:

filename•
N values from 0 to M = mapping of setfl elements to atom types•

As an example, the nialhjea setfl file has tabulated EAM values for 3 elements and their alloy interactions: Ni,
Al, and H. If your LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Ni, and the 4th to be
Al, you would use the following pair_coeff command:

pair_coeff * * nialhjea 1 1 1 2

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three "1" values map
LAMMPS atom types 1,2,3 to the 1st element (Ni) in the setfl file. The final "2" value maps LAMMPS atom
type 4 to Al. If a mapping value is "0", the mapping is not performed. This is useful when EAM potentials are
part of the hybrid pair style, to represent non−EAM atom types.

The formats of the single−element (funcfl) and multi−element (setfl) DYNAMO files are beyond the scope of
this manual. You'll have to look in the src/pair_eam.cpp file and/or the DYNAMO files themselves to figure
out the format. You don't need to know what's in these files to use them, and if you intend to derive your own
potentials for new materials, you'll presumably know enough about EAM potentials and DYNAMO to get
started.

For styles gran/hertzian, gran/history, and gran/no_history, there are no individual atom type coefficients that
can be set. All global settings are made via the pair_style command.

pair_coeff command 156

For styles lj/charmm/coul/charmm, lj/charmm/coul/charmm/implicit, and lj/charmm/coul/long, specify 2 or 4
coefficients:

epsilon (energy units)•
sigma (distance units)•
epsilon_14 (energy units)•
sigma_14 (distance units)•

Note that sigma is defined as in the LJ formula above as the zero−crossing distance for the potential, not as
the energy minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If they are specified, they are used in the Lennard−Jones formula
between 2 atoms of these types which are also first and fourth atoms in any dihedral. No cutoffs are specified
because this CHARMM force field does not allow varying cutoffs for individual atom pairs; all pairs use the
global cutoff(s) specified in the pair_style command.

For styles lj/class2, lj/class2/coul/cut, and lj/class2/coul/long, specify 2, 3, or 4 coefficients:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global class 2 and Coulombic cutoffs are used. If
only one cutoff is specified, it is used as the cutoff for both class 2 and Coulombic interactions for this type
pair. If both coefficients are specified, they are used as the class 2 and Coulombic cutoffs for this type pair.

For lj/class2/coul/long only the class 2 cutoff can be specified since a Coulombic cutoff cannot be specified

pair_coeff command 157

for an individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

For styles lj/cut, lj/cut/coul/cut, lj/cut/coul/debye, and lj/cut/coul/long, specify 2, 3, or 4 coefficients:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined as in the LJ formula above as the zero−crossing distance for the potential, not as
the energy minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs are used. If only
one cutoff is specified, it is used as the cutoff for both LJ and Coulombic interactions for this type pair. If both
coefficients are specified, they are used as the LJ and Coulombic cutoffs for this type pair.

For lj/cut/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

For style lj/expand, specify 3 or 4 coefficients:

epsilon (energy units)•
sigma (distance units)•
delta (distance units)•
cutoff (distance units)•

The delta values can be positive or negative. Note that the cutoff does not include the delta distance. I.e. the
actual force cutoff is the sum of cutoff + delta.

The last coefficient is optional. If not specified, the global LJ cutoff is used.

pair_coeff command 158

For style morse, specify 3 or 4 coefficients:

D0 (energy units)•
alpha (1/distance units)•
r0 (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global morse cutoff is used.

For style soft, specify 2 or 3 coefficients:

Astart (energy units)•
Astop (energy units)•
cutoff (distance units)•

Astart and Astop are the values of the prefactor at the start and end of the next run. At intermediate times the
value of A will be ramped between these 2 values. Note that before performing a 2nd run, you will want to
adjust the values of Astart and Astop for all type pairs, or switch to a new pair style.

The last coefficient is optional. If not specified, the global soft cutoff is used.

For style table, specify 2 or 3 coefficients:

filename•
keyword•
cutoff (distance units)•

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of
the file. The cutoff is an optional coefficient. If not specified, the outer cutoff in the table itself (see below)
will be used to build an interpolation table that extend to the largest tablulated distance. If specified, only file
values up to the cutoff are used to create the interpolation table.

The format of a tabulated file is as follows (without the parenthesized comments):

Morse potential for Fe (one or more comment or blank lines)

MORSE_FE (keyword is first text on line)
N 500 R 1.0 10.0 (N, R, RSQ, BITMAP, FPRIME parameters)
 (blank)
1 1.0 25.5 102.34 (index, r, energy, force)
2 1.02 23.4 98.5
...
500 10.0 0.001 0.003

pair_coeff command 159

A section begins with a non−blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the pair_coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required; its value is the number of table entries that follow. All other parameters are
optional. If "R" or "RSQ" or "BITMAP" does not appear, then the distances in each line of the table are used
as−is to perform spline interpolation. In this case, the table values can be spaced in r uniformly or however
you wish to position table values in regions of large gradients.

If used, the parameters "R" or "RSQ" are followed by 2 values rlo and rhi. If specified, the distance associated
with each energy and force value is computed from these 2 values (at high accuracy), rather than using the
(low−accuracy) value listed in each line of the table. For "R", distances uniformly spaced between rlo and rhi
are computed; for "RSQ", squared distances uniformly spaced between rlo*rlo and rhi*rhi are computed.

If used, the parameter "BITMAP" is also followed by 2 values rlo and rhi. These values, along with the "N"
value determine the ordering of the N lines that follow and what distance is associated with each. This
ordering is complex, so it is not documented here, since this file is typically produced by the pair_write
command with its bitmap option. When the table is in BITMAP format, the "N" parameter in the file must be
equal to 2^M where M is the value specified in the pair_style command. Also, a cutoff parameter cannot be
used as an optional 3rd argument in the pair_coeff command; the entire table extent as specified in the file
must be used.

If used, the parameter "FPRIME" is followed by 2 values fplo and fphi which are the derivative of the force at
the innermost and outermost distances listed in the table. These values are needed by the spline construction
routines. If not specified by the "FPRIME" parameter, they are estimated (less accurately) by the first 2 and
last 2 force values in the table. This parameter is not used by BITMAP tables.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is r (in distance units), the 3rd value is the energy (in energy units), and the 4th is the
force (in force units). The r values must increase from one line to the next (unless the BITMAP parameter is
specified).

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

For style yukawa, specify 1 or 2 coefficients:

A (energy units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global yukawa cutoff is used.

For style hybrid, each pair_coeff command assigns one of the sub−styles specified in the pair_style command
to a set of atom type pairs. The arguments of the pair_coeff command are the same as they would be for the

pair_coeff command 160

sub−style itself, except that an additional argument is added (after the type pairs) which specifies which
sub−style is being used. For example, consider a simulation with 3 atom types: types 1 and 2 are Ni atoms,
type 3 are LJ atoms with charges. The following commands would set up the hybrid simulation:

atom_style hybrid eam charge
pair_style hybrid eam lj/cut/coul/cut 10.0 lj/cut 8.0
pair_coeff 1*2 1*2 eam niu3
pair_coeff 3 3 lj/cut/coul/cut 1.0 1.0
pair_coeff 1*2 3 lj/cut 0.5 1.2

The atom_style hybrid command is needed because atoms in the simulation will have both EAM and charge
attributes.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

Related commands:

pair_style, pair_modify, read_data, read_restart, pair_write

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_modify command

Syntax:

pair_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = shift or mix

shift value = yes or no
mix value = geometric or arithmetic or sixthpower
table value = N

 2^N = # of values in table

•

Examples:

pair_modify shift yes
pair_modify mix arithmetic
pair_modify table 12

Description:

Modify the parameters of the currently defined pair style. Not all parameters are relevant to all pair styles.

The shift keyword determines whether the Lennard−Jones potential is shifted at its cutoff to 0.0. If so, this
adds an energy term to each pairwise interaction which will be printed in the thermodynamic output, but does

pair_modify command 161

http://www.cs.sandia.gov/~sjplimp/lammps.html

not affect atom dynamics (forces). Pair styles that are already 0.0 at their cutoff such as
lj/charmm/coul/charmm are not affected by this setting.

The mix keyword affects how Lennard−Jones coefficients for epsilon and sigma are generated for interactions
between atoms of type I and J, when I != J. (I = J coefficients are set explicitly in the data file or input script.)
The pair_coeff command can be used in the input script to specify epilon/sigma for a specific I,J pairing,
which overrides the setting of the mix keyword. In each case, the LJ cutoff is mixed the same way as sigma.

These are the formulas used by the 3 mix options:

geometric

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)

arithmetic

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2

sixthpower

epsilon_ij = (2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
 (sigma_i^6 + sigma_j^6)
sigma_ij= ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)

Style soft only uses a pre−factor coefficient, which is always mixed geometrically, regardless of the mix
setting. The charmm styles are always mixed arithmetically, regardless of the mix setting. The class2 styles
are always mixed as a sixthpower, regardless of the mix setting, except that the cutoff is mixed according to
the mix setting. Style lj/expand always mixes its delta coefficient using the rule

delta_ij = (delta_i + delta_j) / 2

The table keyword applies to pair styles with a long−range Coulombic term (lj/cut/coul/long and
lj/charmm/coul/long). If N is non−zero, a table of length 2^N is pre−computed for forces and energies, which
can shrink their computational cost by up to a factor of 2. The table is indexed via a bit−mapping technique
(Wolff) and a linear interpolation is performed between adjacent table values. In our experiments with
different table styles (lookup, linear, spline), this method typically gave the best performance in terms of
speed and accuracy. The table is only used for pair distances >= sqrt(2.0) which means this option will have
more effect on simulations in "real" units than those in "lj" units.

The choice of table length is a tradeoff in accuracy versus speed. A larger N yields more accurate force
computations, but requires more memory which can slow down the computation due to cache misses. A
reasonable value of N is between 8 and 16. The default value of 12 (table of length 4096) gives approximately
the same accuracy as the no−table (N = 0) option. For N = 0, forces and energies are computed directly, using
a polynomial fit for the needed erfc() function evaluation, which is what earlier versions of LAMMPS did.
Values greater than 16 typically slow down the simulation and will not improve accuracy; values from 1 to 8
give unreliable results.

Restrictions: none

Related commands:

pair_modify command 162

pair_style, pair_coeff

Default:

The option defaults are shift = no, mix = arithmetic (for lj/charmm pair styles), mix = geometric (for other pair
styles), and table = 12.

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200−32 (1999).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style command

Syntax:

pair_style style args

style = one of the following
none♦
buck or buck/coul/cut or buck/coul/long♦
dipole/cut or dipole/long♦
eam♦
gran/hertzian or gran/history or gran/no_history♦
lj/charmm/coul/charmm or lj/charmm/coul/charmm/implicit or lj/charmm/coul/long♦
lj/class2 or lj/class2/coul/cut or lj/class2/coul/long♦
lj/cut or lj/cut/coul/cut or lj/cut/coul/debye or lj/cut/coul/long♦
lj/expand♦
morse♦
soft♦
table♦
yukawa♦
hybrid♦

•

args = list of arguments for a particular style

none args = none
buck args = cutoff
buck/coul/cut args = cutoff (cutoff2)
buck/coul/long args = cutoff (cutoff2)

 cutoff = cutoff for Buckingham (and Coulombic if only 1 arg)
 cutoff2 = cutoff for Coulombic (optional)

dipole/cut args = cutoff (cutoff2)
dipole/long args = cutoff (cutoff2)

 cutoff = cutoff for Lennard Jones (and Coulombic if only 1 arg)
 cutoff2 = cutoff for Coulombic (optional)

eam args = none
gran/hertzian args = Kn, gamma_n, xmu, dampflag
gran/history args = Kn, gamma_n, xmu, dampflag
gran/no_history args = Kn, gamma_n, xmu, dampflag

 Kn = spring constant for particle repulsion (mg/d units where
 m is mass, g is the gravitational constant,
 d is diameter of a particle)
 gamma_n = damping coefficient for normal direction collisions
 (sqrt(g/d) units)

•

pair_style command 163

http://www.cs.sandia.gov/~sjplimp/lammps.html

 xmu = friction coefficient or static yield criterion
 dampflag = flag (0/1) for whether to (no/yes) include tangential damping

lj/charmm/coul/charmm args = inner outer (inner2) (outer2)
lj/charmm/coul/charmm/implicit args = inner outer (inner2) (outer2)
lj/charmm/coul/long args = inner outer (cutoff)

 inner, outer = switching cutoffs for LJ (and Coulombic if only 2 args)
 inner2, outer2 = switching cutoffs for Coulombic (optional)
 cutoff = cutoff for Coulombic (optional, outer is Coulombic cutoff if only 2 args)

lj/class2 args = cutoff
lj/class2/coul/cut args = cutoff (cutoff2)
lj/class2/coul/long args = cutoff (cutoff2)

 cutoff = cutoff for class2 (and Coulombic if only 1 arg)
 cutoff2 = cutoff for Coulombic (optional)

lj/cut args = cutoff
lj/cut/coul/cut args = cutoff (cutoff2)
lj/cut/coul/debye args = kappa cutoff (cutoff2)
lj/cut/coul/long args = cutoff (cutoff2)

 cutoff = cutoff for Lennard Jones (and Coulombic if only 1 arg)
 cutoff2 = cutoff for Coulombic (optional)
 kappa = Debye length (inverse distance)

lj/expand args = cutoff
 cutoff = cutoff for expanded Lennard−Jones interactions

morse args = cutoff
 cutoff = cutoff for Morse interactions

soft = cutoff
 cutoff = cutoff for soft interactions

table args = style N
 style = lookup or linear or spline or bitmap = method of interpolation
 N = use N values in lookup, linear, spline tables
 N = use 2^N values in bitmap tables

yukawa args = kappa cutoff
 kappa = screening length (inverse distance)
 cutoff = cutoff for Yukawa interactions

hybrid args = list of one or more styles with their args

Examples:

pair_style none
pair_style eam
pair_style gran/history 200000.0 0.5 1.0 1
pair_style lj/charmm/coul/charmm 10.0 10.3
pair_style lj/charmm/coul/charmm/implicit 10.0
pair_style lj/charmm/coul/long 10.0
pair_style lj/cut 2.5
pair_style lj/cut/coul/cut 10.0 8.0
pair_style lj/cut/coul/debye 1.5 3.0
pair_style lj/cut/coul/long 12.0
pair_style lj/expand 2.5
pair_style class2 8.0
pair_style soft 2.0
pair_style table linear 1000
pair_style table bitmap 12
pair_style hybrid lj/charmm/coul/long 10.0 eam

Description:

Set the formula(s) LAMMPS will use to computing pairwise interactions. In LAMMPS, a pairwise force field
includes all pairwise interactions (Lennard Jones, Coulombic, etc), so there is a range of style choices that
encompass combinations of multiple kinds of interactions.

pair_style command 164

The coefficients for the formulas for each atom type pair are set by the pair_coeff command or read from a
file by the read_data or read_restart commands. Mixing and shifting of the interaction potentials is discussed
is the documentation for the pair_modify command.

The cutoff arguments set global cutoffs for all atom type pairs. The global value can be overridden by the
pair_coeff command for a specific pair. The pair style settings (including global cutoffs) can be changed by a
subsequent pair_style command using the same style. This will reset the cutoffs for all atom type pairs,
including those previously set explicitly by a pair_coeff command. The exceptions to this are that pair_style
table and hybrid settings cannot be reset. A new pair_style command for these styles will wipe out all
previously specified pair_coeff values.

All cutoff arguments are in distance units. The distance(s) can be smaller or larger than the dimensions of the
simulation box.

In the formulas to follow, E is the energy of a pairwise interaction between two atoms separated by a distance
r. The force between the atoms is the negative derivative of this expression.

Style none turns off pairwise interactions.

With this choice, the force cutoff is 0.0, which means that only atoms within the neighbor skin distance (see
the neighbor command) are communicated between processors. You must insure the skin distance is large
enough to acquire atoms needed for computing bonds, angles, etc.

A pair style of none will also prevent pairwise neighbor lists from being built. However if the neighbor style
is bin, data structures for binning are still allocated. If the neighbor skin distance is small, then these data
structues can consume a large amount of memory. So you should either set the neighbor style to nsq or set the
skin distance to a larger value.

The buck styles compute a Buckingham potential (exp/6 instead of Lennard−Jones 12/6) given by

where A, rho, and C are coefficients defined for each pair of atom types. Rc is the cutoff.

The buck/coul/cut and buck/coul/long styles add a Coulombic term as described in the lj/cut styles.

The dipole styles are not yet implemented in LAMMPS. They will enable a point dipole and charge to be
assigned to each atom and the resulting charge−dipole and dipole−dipole interactions to be computed.

Style eam computes pairwise interactions for metals and metal alloys using embedded−atom method (EAM)
potentials (Daw). The total energy Ei of an atom I is given by

where F is the embedding energy which is a function of the atomic electron density rho, and phi is a pair

pair_style command 165

potential interaction. The multi−body nature of the EAM potential is a result of the embedding energy term.
Both summations in the formula are over all neighbors J of atom I within the cutoff distance.

The cutoff distance and the tabulated values of F, rho, and phi are listed in one or more files which are
specified by the pair_coeff command. Several files for different metals are in the "potentials" directory of the
LAMMPS distribution. These are ASCII text files in a DYNAMO−style format. DYNAMO was a serial MD
code authored by two of the EAM originators, Stephen Foiles and Murray Daw.

The gran styles use the following formula (Silbert) for frictional force between two granular particles that are
a distance r apart when r is less than the contact distance d.

The 1st term is a normal force and the 2nd term is a tangential force. The other quantites are as follows:

delta = d − r•
f(x) = 1 for Hookean contacts used in pair styles history and no_history•
f(x) = sqrt(x) for pair style hertzian•
Kn = elastic constant for normal contact (listed above)•
Kt = elastic constant for tangential contact = 2/7 of Kn•
gamma_n = viscoelastic constants for normal contact (listed above)•
gamma_t = viscoelastic constants for tangential contact = 1/2 of gamma_n•
m_eff = Mi Mj / (Mi + Mj) = effective mass of 2 particles of mass Mi and Mj•
Delta St = tangential displacement vector between the 2 spherical particles which is truncated to
satisfy a frictional yield criterion

•

n = a unit vector along the line connecting the centers of the 2 particles•
Vn = normal component of the relative velocity of the 2 particles•
Vt = tangential component of the relative velocity of the 2 particles•

See the citation for more discussion of the granular potentials.

The lj/charmm styles compute LJ and Coulombic interactions with an additional switching function S(r) that
ramps the energy and force smoothly to zero between an inner and outer cutoff. It is a widely used option in
the CHARMM MD code.

pair_style command 166

Both the LJ and Coulombic terms require an inner and outer cutoff. They can be the same for both formulas or
different depending on whether 2 or 4 arguments are used in the pair_style command. In each case, the inner
cutoff distance must be less than the outer cutoff. It it typical to make the difference between the 2 cutoffs
about 1.0 Angstrom.

Style lj/charmm/coul/charmm/implicit computes the same formulas as style lj/charmm/coul/charmm except
that an additional 1/r term is included in the Coulombic formula. The Coulombic energy thus varies as 1/r^2.
This is effectively a distance−dependent dielectric term which is a simple model for an implicit solvent with
additional screening. It is designed for use in a simulation of an unsolvated biomolecule (no explicit water
molecules).

Style lj/charmm/coul/long computes the same formulas as style lj/charmm/coul/charmm except that an
additional damping factor is applied to the Coulombic term, as in the discussion for style lj/cut/coul/long.
Only one Coulombic cutoff is specified for lj/charmm/coul/long; if only 2 arguments are used in the pair_style
command, then the outer LJ cutoff is used as the single Coulombic cutoff.

The lj/class2 styles compute a 6/9 Lennard−Jones potential given by

where epsilon and sigma are coefficients defined for each pair of atom types. Rc is the cutoff.

The lj/class2/coul/cut and lj/class2/coul/long styles add a Coulombic term as described in the lj/cut styles.

The lj/cut styles compute the standard 6/12 Lennard−Jones potential, given by

pair_style command 167

where epsilon and sigma are coefficients defined for each pair of atom types. Rc is the cutoff.

Style lj/cut/coul/cut adds a Coulombic pairwise interaction given by

where C is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the
dielectric constant which can be set by the dielectric command. If one cutoff is specified in the pair_style
command, it is used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs
for the LJ and Coulombic terms respectively.

Style lj/charmm/coul/debye adds an additional exp() damping factor to the Coulombic term, given by

where Kappa is the Debye length. This potential is another way to mimic the screening effect of a polar
solvent.

Style lj/cut/coul/long computes the same Coulombic interactions as style lj/cut/coul/cut except that an
additional damping factor is applied to the Coulombic term so it can be used in conjunction with the
kspace_style command and its ewald or pppm option. The Coulombic cutoff specified for this style means that
pairwise interactions within this distance are computed directly; interactions outside that distance are
computed in K−space.

Style lj/expand computes a LJ interaction with a distance shifted by delta

The epsilon, sigma, and delta coefficients are defined for each pair of atom types. Rc is the cutoff.

Style morse computes pairwise interactions with the formula

where D0, alpha, and r0 are coefficients defined for each pair of atom types. Rc is the cutoff.

Style soft is useful for pushing apart overlapping atoms, since it does not blow up as r goes to 0. It computes a
pairwise interaction as

pair_style command 168

where A is a pre−factor that varies in time from the start to the end of the run. Starting and ending values for
A are specified by the pair_coeff or read_data command. Rc is the cutoff.

Style table creates interpolation tables of length N from pair potential and force values listed in a file(s) as a
function of distance. The files are read by the pair_coeff command which also describes the file format.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
force values at each of N distances. During a simulation, these tables are used to interpolate energy and force
values as needed. The interpolation is done in one of 4 styles: lookup, linear, spline, or bitmap.

For the lookup style, the distance between 2 atoms is used to find the nearest table entry, which is the energy
or force.

For the linear style, the distance is used to find 2 surrounding table values from which an energy or force is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored each of the N values in the table. The
pair distance is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial
which computes the energy or force.

For the bitmap style, the N means to create interpolation tables that are 2^N in length. The pair distance is
used to index into the table via a fast bit−mapping technique (Wolff) and a linear interpolation is performed
between adjacent table values.

Style yukawa computes pairwise interactions with the formula

where A is a coefficient defined for each pair of atom types. Rc is the cutoff.

The hybrid style enables the use of multiple pair styles in one simulation. A pair style can be assigned to each
pair of atom types via the pair_coeff command.

For example, a metal on a LJ surface could be computed where the metal atoms interact with each other via a
eam potential, the surface atoms interact with each other via a lj/cut potential, and the metal/surface
interaction is also via a lj/cut potential.

All pair styles that will be used must be listed in the pair_style hybrid command (in any order). Each
sub−style is listed with its arguments, as illustrated in the last example above.

Restrictions:

This command must be used before any coefficients are set by the pair_coeff, read_data, or read_restart
commands.

pair_style command 169

The hybrid style cannot include any of the gran styles in its list of styles to use. Only one coul/long style can
be used in the list of hybrid styles.

Some pair styles are part of specific packages. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

The gran/hertzian, gran/history, and gran/no_history styles are part of the "granular" package. The
lj/charmm/coul/charmm and lj/charmm/coul/charmm/implicit styles are part of the "molecule" package. The
lj/cut/coul/long and lj/charmm/coul/long styles are part of the "kspace" package. The eam style is part of the
"metal" package.

Related commands:

pair_coeff, read_data, pair_modify, kspace_style, dielectric, pair_write

Default:

pair_style none

(Daw) Daw, Baskes, Phys Rev Lett, 50, 1285 (1983). Daw, Baskes, Phys Rev B, 29, 6443 (1984).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200−32 (1999).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_write command

Syntax:

pair_write itype jtype N style inner outer file keyword Qi Qj

itype,jtype = 2 atom types•
N = # of values•
style = r or rsq or bitmap•
inner,outer = inner and outer cutoff (distance units)•
file = name of file to write values to•
keyword = section name in file for this set of tabulated values•
Qi,Qj = 2 atom charges (charge units) (optional)•

Examples:

pair_write 1 3 500 r 1.0 10.0 table.txt LJ
pair_write 1 1 1000 rsq 2.0 8.0 table.txt Yukawa_1_1 −0.5 0.5

Description:

pair_write command 170

http://www.cs.sandia.gov/~sjplimp/lammps.html

Write energy and force values to a file as a function of distance for the currently defined pair potential. This is
useful for plotting the potential function or otherwise debugging its values. If the file already exists, the table
of values is appended to the end of the file to allow multiple tables of energy and force to be included in one
file.

The energy and force values are computed at distances from inner to outer for 2 interacting atoms of type
itype and jtype, using the appropriate pair_coeff coefficients. If the style is r, then N distances are used,
evenly spaced in r; if the style is rsq, N distances are used, evenly spaced in r^2.

For example, for N = 7, style = r, inner = 1.0, and outer = 4.0, values are computed at r = 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0.

If the style is bitmap, then 2^N values are written to the file in a format and order consistent with how they are
read in by the pair_coeff command for pair style table. For reasonable accuracy in a bitmapped table, choose
N >= 12, an inner value that is smaller than the distance of closest approach of 2 atoms, and an outer value <=
cutoff of the potential.

If the pair potential is computed between charged atoms, the charges of the pair of interacting atoms can
optionally be specified. If not specified, values of Qi = Qj = 1.0 are used.

The file is written in the format used as input for the pair_style table option with keyword as the section name.
Each line written to the file lists an index number (1−N), a distance (in distance units), an energy (in energy
units), and a force (in force units).

Restrictions:

All force field coefficients for pair and other kinds of interactions must be set before this command can be
invoked.

Due to how the pairwise force is computed, an inner value > 0.0 must be specified even if the potential has a
finite value at r = 0.0.

Related commands:

pair_style, pair_coeff

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

processors command

Syntax:

processors Px Py Pz

Px,Py,Pz = # of processors in each dimension of a 3d grid•

Examples:

processors 2 4 4

processors command 171

http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Specify how processors are mapped as a 3d logical grid to the global simulation box.

When this command has not been specified, LAMMPS will choose Px, Py, Pz based on the dimensions of the
global simulation box so as to minimize the surface/volume ratio of each processor's sub−domain.

Since LAMMPS does not load−balance by changing the grid of 3d processors on−the−fly, this command
should be used to override the LAMMPS default if it is known to be sub−optimal for a particular problem. For
example, a problem where the atom's extent will change dramatically over the course of the simulation.

The product of Px, Py, Pz must equal P, the total # of processors LAMMPS is running on. If multiple
partitions are being used then P is the number of processors in this partition; see this section for an
explanation of the −partition command−line switch.

If P is large and prime, a grid such as 1 x P x 1 will be required, which may incur extra communication costs.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command. It
can be used before a restart file is read to change the 3d processor grid from what is specified in the restart
file.

Related commands: none

Default:

LAMMPS chooses Px, Py, Pz

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

read_data command

Syntax:

read_data file

file = name of data file to read in•

Examples:

read_data data.lj
read_data ../run7/data.polymer.gz

Description:

Read in a data file containing information LAMMPS needs to run a simulation. The file can be ASCII text or
a gzipped text file (detected by a .gz suffix). This is one of 3 ways to specify initial atom coordinates; see the
read_restart and create_atoms commands for alternative methods.

read_data command 172

http://www.cs.sandia.gov/~sjplimp/lammps.html

The structure of the data file is important, though many settings and sections are optional or can come in any
order. See the examples directory for sample data files for different problems.

A data file has a header and a body. The header appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at a time. Lines can have a trailing
comment starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it is
skipped. If the line contains a header keyword, the corresponding value(s) is read from the line. If it doesn't
contain a header keyword, the line begins the body of the file.

The body of the file contains zero or more sections. The first line of a section has only a keyword. The next
line is skipped. The remaining lines of the section contain values. The number of lines depends on the section
keyword as described below. Zero or more blank lines can be used between sections. Sections can appear in
any order, with a few exceptions as noted below.

The formatting of individual lines in the data file (indentation, spacing between words and numbers) is not
important except that header and section keywords (e.g. atoms, xlo xhi, Masses, Bond Coeffs) must be
capitalized as shown and can't have extra white space between their words − e.g. two spaces or a tab between
"Bond" and "Coeffs" is not valid.

These are the recognized header keywords. Header lines can come in any order. The value(s) is read from the
beginning of the line. Thus the keyword atoms should be in a line like "1000 atoms" and the keyword ylo yhi
should be in a line like "−10.0 10.0 ylo yhi". All these settings have a default value of 0, except the lo/hi box
size defaults are −0.5 and 0.5. A line need only appear if the value is different than the default.

atoms = # of atoms in system•
bonds = # of bonds in system•
angles = # of angles in system•
dihedrals = # of dihedrals in system•
impropers = # of impropers in system•
atom types = # of atom types in system•
bond types = # of bond types in system•
angle types = # of angle types in system•
dihedral types = # of dihedral types in system•
improper types = # of improper types in system•
xlo xhi = simulation box boundaries in x dimension•
ylo yhi = simulation box boundaries in y dimension•
zlo zhi = simulation box boundaries in z dimension•

For 2d simulations, the zlo zhi values should be set to bound the z coords for atoms that appear in the file; the
default of −0.5 0.5 is valid if all z coords are 0.0.

The initial simulation box size is determined by the lo/hi settings. In any dimension, the system may be
periodic or non−periodic; see the boundary command.

If the system is non−periodic (in a dimension), then all atoms in the data file should have coordinates (in that
dimension) between the lo and hi values. Furthermore, if running in parallel, the lo/hi values should be just a
bit smaller/larger than the min/max extent of atoms. For example, if your atoms extend from 0 to 50, you
should not specify the box bounds as −10000 and 10000. Since LAMMPS uses the specified box size to
layout the 3d grid of processors, this will be sub−optimal and may cause a parallel simulation to lose atoms
when LAMMPS shrink−wraps the box to the atoms.

read_data command 173

If the system is periodic (in a dimension), then atom coordinates can be outside the bounds; they will be
remapped (in a periodic sense) back inside the box.

These are the section keywords for the body of the file.

Atoms, Velocities, Masses, Dipoles = atom−property sections•
Bonds, Angles, Dihedrals, Impropers = molecular topolgy sections•
Pair Coeffs, Bond Coeffs, Angle Coeffs, Dihedral Coeffs, Improper Coeffs = force field sections•
BondBond Coeffs, BondAngle Coeffs, MiddleBondTorsion Coeffs, EndBondTorsion Coeffs,
AngleTorsion Coeffs, AngleAngleTorsion Coeffs, BondBond13 Coeffs, AngleAngle Coeffs = class 2
force field sections

•

Each section is now listed in alphabetic order. The format of each section is described including the number of
lines it must contain and rules (if any) for where it can appear in the data file.

Any individual line in the various sections can have a trailing comment starting with "#" for annotation
purposes. E.g. in the Atoms section:

10 1 17 −1.0 10.0 5.0 6.0 # salt ion

Angle Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1−N)
 coeffs = list of coeffs

•

example:

 6 70 108.5 0 0

•

The number and meaning of the coefficients are specific to the defined angle style. See the angle_style and
angle_coeff commands for details. Coefficients can also be set via the angle_coeff command in the input
script.

AngleAngle Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1−N)
 coeffs = list of coeffs (see improper_coeff)

•

AngleAngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see dihedral_coeff)

•

read_data command 174

Angles section:

one line per angle•
line syntax: ID type atom1 atom2 atom3

 ID = number of angle (1−Nangles)
 type = angle type (1−Nangletype)
 atom1,atom2,atom3 = IDs of 1st,2nd,3rd atoms in angle

example:

 2 2 17 29 430

•

The 3 atoms are ordered linearly within the angle. E.g H,O,H for a water molecule. The Angles section must
appear after the Atoms section. All values in this section must be integers (1, not 1.0).

AngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see dihedral_coeff)

•

Atoms section:

one line per atom•
line syntax: depends on atom style•

This is the list of all possible quantities that can appear on each line of this section:

atom−ID = unique integer ID of atom•
molecule−ID = integer ID of the molecule the atom belongs to•
type−ID = integer type ID of atom (1−Ntype)•
q = charge on atom•
diameter = diameter of atom•
density = density of atom•
x,y,z = coordinates of atom•
mux,muy,muz = components of dipole orientation of atom•
nx,ny,nz = image indices for atom•

Which of these quantities are actually listed depends on the atom style. This is the list of which styles require
each quantity:

atom−ID = all styles•
molecule−ID = angle, bond, molecular, full styles•
type−ID = all styles•
q = charge, dipole, full styles•
diameter = granular style•
density = granular style•
x,y,z = all styles•

read_data command 175

mux,muy,muz = dipole style•
nx,ny,nz = optional for all styles (see below)•

Any quantity that is used by the atom style appears in the order listed above. Thus if the atom style is atomic,
an atom line should have 5 quantities: atom−ID, type−ID, x, y, z. If the atom style is hybrid eam dipole
molecular, then an atom line should have 10 quantites: atom−ID, molecule−ID, type−ID, q, x, y, z, mux, muy,
muz.

The units for these quantities depend on the unit style; see the units command for details.

For 2d simulations specify z as 0.0, or whatever value is within the zlo zhi setting in the data file header.

The atom−ID is used to identify the atom throughout the simulation and in dump files. Normally, IDs should
be values from 1 to Natoms. Values larger than Natoms can be used, but they will cause extra memory to be
allocated on each processor, if an atom map array is used (see the atom_modify command).

The molecule ID is a 2nd identifier attached to an atom. It can be 0 if it is an unbonded atom or if you don't
wish to assign it to a molecule numbered from 1−N.

An Atoms section must appear in the data file if natoms > 0 in the header section. The atoms can be listed in
any order.

Atom lines (all or none of them) can optionally list 3 final integer values: nx,ny,nz. For periodic dimensions,
they specify which image of the box the atom is considered to be in. An image of 0 means the box as defined.
A value of 2 means add 2 box lengths to get the true value. A value of −1 means subtract 1 box length to get
the true value. LAMMPS updates these flags as atoms cross periodic boundaries during the simulation. The
flags can be output via the dump and dump_modify commands. If nx,ny,nz values are not set in the data file,
LAMMPS initializes them to 0.

Atom velocities are set to 0.0 when the Atoms section is read. They may later be set by a Velocities section or
by a velocity command in the input script.

Bond Coeffs section:

one line per bond type•
line syntax: ID coeffs

 ID = bond type (1−N)
 coeffs = list of coeffs

•

example:

 4 250 1.49

•

The number and meaning of the coefficients are specific to the defined bond style. See the bond_style and
bond_coeff commands for details. Coefficients can also be set via the bond_coeff command in the input
script.

BondAngle Coeffs section:

one line per angle type•
line syntax: ID coeffs•

read_data command 176

 ID = angle type (1−N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

BondBond Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1−N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

•

BondBond13 Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Bonds section:

one line per bond•
line syntax: ID type atom1 atom2

 ID = bond number (1−Nbonds)
 type = bond type (1−Nbondtype)
 atom1,atom2 = IDs of 1st,2nd atoms in bond

•

example:

 12 3 17 29

•

The Bonds section must appear after the Atoms section. All values in this section must be integers (1, not 1.0).

Dihedral Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs

•

example:

 3 0.6 1 0 1

•

The number and meaning of the coefficients are specific to the defined dihedral style. See the dihedral_style
and dihedral_coeff commands for details. Coefficients can also be set via the dihedral_coeff command in the
input script.

Dihedrals section:

one line per dihedral•
line syntax: ID type atom1 atom2 atom3 atom4•

read_data command 177

 ID = number of dihedral (1−Ndihedrals)
 type = dihedral type (1−Ndihedraltype)
 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in dihedral

example:

 12 4 17 29 30 21

•

The 4 atoms are ordered linearly within the dihedral. The Dihedrals section must appear after the Atoms
section. All values in this section must be integers (1, not 1.0).

Dipoles section:

one line per atom type line syntax: ID dipole−moment

 ID = atom type (1−N)
 dipole−moment = value of dipole moment

•

example:

 2 0.5

•

This defines the dipole moment of each atom type (which can be 0.0 for some types). This can also be set via
the dipole command in the input script.

EndBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Improper Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1−N)
 coeffs = list of coeffs

•

example:

 2 20 0.0548311

•

The number and meaning of the coefficients are specific to the defined improper style. See the improper_style
and improper_coeff commands for details. Coefficients can also be set via the improper_coeff command in
the input script.

Impropers section:

one line per improper•
line syntax: ID type atom1 atom2 atom3 atom4

 ID = number of improper (1−Nimpropers)
 type = improper type (1−Nimpropertype)

•

read_data command 178

 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in improper

example:

 12 3 17 29 13 100

•

The Impropers section must appear after the Atoms section. All values in this section must be integers (1, not
1.0).

Masses section:

one line per atom type•
line syntax: ID mass

 ID = atom type (1−N)
 mass = mass value

•

example:

 3 1.01

•

This defines the mass of each atom type. This can also be set via the mass command in the input script. This
section should not be used for atom styles that define a mass for individual atoms − e.g. atom style granular.

MiddleBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Pair Coeffs section:

one line per atom type•
line syntax: ID coeffs

 ID = atom type (1−N)
 coeffs = list of coeffs

•

example:

 3 0.022 2.35197 0.022 2.35197

•

The number and meaning of the coefficients are specific to the defined pair style. See the pair_style and
pair_coeff commands for details. Coefficients can also be set via the pair_coeff command in the input script.

Velocities section:

one line per atom
line syntax: atom−ID vx vy vz

 atom−ID = atom ID (1−N)
 vx,vy,vz = components of velocity of the atom

•

example:•

read_data command 179

 45 −3.4 0.05 1.25

The velocity lines can appear in any order. This section can only be used after an Atoms section. Velocities
can also be set by the velocity command in the input script.

Restrictions: none

Related commands:

read_restart, create_atoms

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

read_restart command

Syntax:

read_restart file

file = name of binary restart file to read in•

Examples:

read_restart save.10000

Description:

Read in a previously saved problem from a restart file. This allows continuation of a previous run.

Restart files are saved in binary format to enable exact restarts, meaning that the trajectories of a restarted run
will precisely match those produced by the original run had it continued on. Several things can prevent exact
restarts due to round−off effects, in which case the trajectories in the 2 runs will slowly diverge. These include
running on a different number of processors or changing certain settings such as those set by the newton or
processors commands. LAMMPS will issue a WARNING in these cases. Certain fixes will also not restart
exactly, though they should provide statistically similar results. These include the shake and langevin styles. If
a restarted run is immediately different than the run which produced the restart file, it could be a LAMMPS
bug, so consider reporting it if you think the behavior is wrong.

Because restart files are binary, they may not be portable to other machines. They can be converted to ASCII
data files using the restart2data tool in the tools sub−directory of the LAMMPS distribution.

A restart file stores the units and atom style, simulation box attibutes, individual atoms and their attributes
including molecular topology, force field styles and coefficients, special_bonds settings, and atom group
definitions. This means that commands for these quantities do not need to be specified in your input script that
reads the restart file. The exceptions to this are listed below in the Restrictions section.

Information about the kspace_style settings are not stored in the restart file. Hence if you wish to invoke an
Ewald or PPPM solver, this command must be re−issued after the restart file is read.

read_restart command 180

http://www.cs.sandia.gov/~sjplimp/lammps.html

The restart file also stores values for any fixes that require state information to enable restarting where they
left off. These include the nvt and npt styles that have a global state, as well as the msd and wall/gran styles
that store information about each atom.

Fix commands are not stored in the restart file which means they must be specified in the input script that
reads the restart file. To re−enable a fix whose state was stored in the restart file, the fix command in the new
input script must use the same fix−ID and group−ID as the input script that wrote the restart file. LAMMPS
will print a message indicating that the fix is being re−enabled.

Note that no other information is stored in the restart file. This means that your new input script should
specify settings for quantities like timestep size, thermodynamic and dump output, etc.

Bond interactions (angle, etc) that have been turned off by the fix shake or delete_bonds command will be
written to a restart file as if they are turned on. This means they will need to be turned off again in a new run
after the restart file is read.

Bonds that are broken (e.g. by a bond−breaking potential) are written to the restart file as broken bonds with a
type of 0. Thus these bonds will still be broken when the restart file is read.

Restrictions:

The pair_style eam, table, and hybrid styles do not store coefficient data for individual atom type pairs in the
restart file. Nor does the bond_style hybrid style. Thus you must use new pair_coeff and bond_coeff
commands to read the appropriate tabulated files or reset the coefficients after the restart file is read.

Related commands:

read_data, write_restart, restart

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

region command

Syntax:

region ID style args keyword value ...

ID = user−assigned name for the region•
style = block or sphere or cylinder or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all
 dimensions (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

•

region command 181

http://www.cs.sandia.gov/~sjplimp/lammps.html

union args = N reg−ID1 reg−ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg−ID1,reg−ID2, ... = IDs of regions to join together

intersect args = N reg−ID1 reg−ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg−ID1,reg−ID2, ... = IDs of regions to intersect

zero or more keyword/value pairs may be appended to the args•
keyword = side or units

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

•

Examples:

region 1 block −3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 −5.0 INF units box
region outside union 4 side1 side2 side3 side4

Description:

This command defines a geometric region of space. Various other commands use regions. For example, the
region can be filled with atoms via the create_atoms command. Or the atoms in the region can be identified as
a group via the group command, or deleted via the delete_atoms command.

The lo/hi values for block or cylinder styles can be specified as INF which means they extend all the way to
the global simulation box boundary. If a region is defined before the simulation box has been created (via
create_box or read_data or read_restart commands), then an INF parameter cannot be used.

For style cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis
dimension. For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example
above specifes a cylinder with its axis in the y−direction located at x = 2.0 and z = 3.0, with a radius of 5.0,
and extending in the y−direction from −5.0 to the upper box boundary.

The union style creates a region consisting of the volume of all the listed regions combined. The intesect style
creates a region consisting of the volume that is common to all the listed regions.

The side keyword determines whether the region is considered to be inside or outside of the specified
geometry. Using this keyword in conjunction with union and intersect regions, complex geometries can be
built up. For example, if the interior of two spheres were each defined as regions, and a union style with side
= out was constructed listing the region−IDs of the 2 spheres, the resulting region would be all the volume in
the simulation box that was outside both of the spheres.

The units keyword determines the meaning of the distance units used to define the region. A box value selects
standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A lattice
value means the distance units are in cubic lattice spacings. The lattice command must first be used to define a
lattice.

Restrictions: none

region command 182

Related commands:

lattice, create_atoms, delete_atoms, group

Default:

The option defaults are side = in and units = lattice.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

replicate command

Syntax:

replicate nx ny nz

nx,ny,nz = replication factors in each dimension•

Examples:

replicate 2 3 2

Description:

Replicate the current simulation one or more times in each dimension. For example, replication factors of
2,2,2 will create a simulation with 8x as many atoms by doubling the simulation domain in each dimension. A
replication factor of 1 in a dimension leaves the simulation domain unchanged.

All properties of the atoms are replicated, including their velocities, which may or may not be desirable. New
atom IDs (tags) are assigned to new atoms, as are molecule IDs. Bonds and other topology interactions are
created between pairs of new atoms as well as between old and new atoms. This is done by using the image
flag for each atom to "unwrap" it out of the periodic box before replicating it. This means that molecular
bonds you specify in the orignal data file that span the periodic box should be between two atoms with image
flags that differ by 1. This will allow them to be unwrapped appropriately.

This command operates similar to the replicate tool in the tools sub−directory of the LAMMPS distribution
which creates new data files from old ones.

Restrictions:

A 2d simulation cannot be replicated in the z dimension.

If a simulation is non−periodic in a dimension, care should be used when replicating it in that dimension, as it
may put atoms nearly on top of each other.

If the current simulation was read in from a restart file (before a run is performed), there can have been no fix
information stored in the file for individual atoms. Similarly, no fixes can be defined at the time the replicate
command is used that require vectors of atom information to be stored. This is because the replicate command
does not know how to replicate that information for new atoms it creates.

Related commands: none

replicate command 183

http://www.cs.sandia.gov/~sjplimp/lammps.html

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

reset_timestep command

Syntax:

reset_timestep N

N = timestep number•

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally comes after the timestep has been set
by reading it in from a file or a previous simulation advanced the timestep.

The read_data and create_box commands set the timestep to 0; the read_restart command sets the timestep to
the value it had when the restart file was written.

Restrictions: none

Related commands: none

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

restart command

Syntax:

restart 0
restart N root
restart N file1 file2

N = write a restart file every this many timesteps•
root = filename to which timestep # is appended•
file1,file2 = two full filenames, toggle between them when writing file•

Examples:

restart 0
restart 1000 poly.restart
restart 10000 poly.r.1 poly.r.2

reset_timestep command 184

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Write out a binary restart file every so many timesteps as a run proceeds. A value of 0 means do not write out
restart files. Using one filename as an argument will create a series of filenames with a timestep suffix, e.g.
the 2nd example above will create poly.restart.1000, poly.restart.2000, poly.restart.3000, etc. Using two
filenames will produce only 2 restart files. LAMMPS will toggle between the 2 names as it writes successive
restart files.

See the read_restart command for information about what is stored in a restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the
file is binary (to enable exact restarts), it may not be readable on another machine. In this case, the restart2data
program in the tools directory can be used to convert a restart file to an ASCII data file.

Restrictions: none

Related commands:

write_restart, read_restart

Default:

restart 0

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

run command

Syntax:

run N

N = # of timesteps•

Examples:

run 10000

Description:

Run or continue dynamics for the specified number of timesteps.

When the run style is respa, N refers to outer loop (largest) timesteps.

A value of N = 0 is acceptable; only the thermodynamics of the system are computed and printed without
taking a timestep.

Restrictions: none

Related commands:

run command 185

http://www.cs.sandia.gov/~sjplimp/lammps.html

run_style, temper

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

run_style command

Syntax:

run_style style args

style = verlet or respa

verlet args = none
respa args = N n1 n2 ... keyword values ...

 N = # of levels of rRESPA
 n1, n2, ... = loop factor bewteen rRESPA levels (N−1 values)
 zero or more keyword/value pairings may be appended to the loop factors
 keyword = bond or angle or dihedral or improper or

pair or inner or middle or outer or kspace
bond value = M

 M = which level (1−N) to compute bond forces in
angle value = M

 M = which level (1−N) to compute angle forces in
dihedral value = M

 M = which level (1−N) to compute dihedral forces in
improper value = M

 M = which level (1−N) to compute improper forces in
pair value = M

 M = which level (1−N) to compute pair forces in
inner values = M cut1 cut2

 M = which level (1−N) to compute pair inner forces in
 cut1 = inner cutoff between pair inner and
 pair middle or outer (distance units)
 cut2 = outer cutoff between pair inner and
 pair middle or outer (distance units)

middle values = M cut1 cut2
 M = which level (1−N) to compute pair middle forces in
 cut1 = inner cutoff between pair middle and pair outer (distance units)
 cut2 = outer cutoff between pair middle and pair outer (distance units)

outer value = M
 M = which level (1−N) to compute pair outer forces in

kspace value = M
 M = which level (1−N) to compute kspace forces in

•

Examples:

run_style verlet
run_style respa 4 2 2 2 bond 1 dihedral 2 pair 3 kspace 4
run_style respa 4 2 2 2 bond 1 dihedral 2 inner 3 5.0 6.0 outer 4 kspace 4

Description:

Choose the style of time integrator used for molecular dynamics simulations performed by LAMMPS.

The verlet style is a velocity−Verlet integrator.

run_style command 186

http://www.cs.sandia.gov/~sjplimp/lammps.html

The respa style implements the rRESPA multi−timescale integrator (Tuckerman) with N hierarchical levels,
where level 1 is the innermost loop (shortest timestep) and level N is the outermost loop (largest timestep).
The loop factor arguments specify what the looping factor is between levels. N1 specifies the number of
iterations of level 1 for a single iteration of level 2, N2 is the iterations of level 2 per iteration of level 3, etc.
N−1 looping parameters must be specified.

The timestep command sets the timestep for the outermost rRESPA level. Thus if the example command
above for a 4−level rRESPA had an outer timestep of 4.0 fmsec, the inner timestep would be 8x smaller or 0.5
fmsec. All other LAMMPS commands that specify number of timesteps (e.g. neigh_modify parameters, dump
every N timesteps, etc) refer to the outermost timesteps.

The rRESPA keywords enable you to specify at what level of the hierarchy various forces will be computed.
If not specified, the defaults are that bond forces are computed at level 1 (innermost loop), angle forces are
computed where bond forces are, dihedral forces are computed where angle forces are, improper forces are
computed where dihedral forces are, pair forces are computed at the outermost level, and kspace forces are
computed where pair forces are. The inner, middle, outer forces have no defaults.

The inner and middle keywords take additional arguments for cutoffs that are used by the force computations.
If the 2 cutoffs for inner are 5.0 and 6.0, this means that all pairs up to 6.0 apart are computed by the inner
force. Those between 5.0 and 6.0 have their force go ramped to 0.0 so the overlap with the next regime
(middle or outer) is smooth. The next regime (middle or outer) will compute forces for all pairs from 5.0
outward, with those from 5.0 to 6.0 having their value ramped in an inverse manner.

When using rRESPA (or for any MD simulation) care must be taken to choose a timestep size(s) that insures
the Hamiltonian for the chosen ensemble is conserved. For the constant NVE ensemble, total energy must be
conserved. Unfortunately, it is difficult to know a priori how well energy will be conserved, and a fairly long
test simulation (~10 ps) is usually necessary in order to verify that no long−term drift in energy occurs with
the trial set of parameters.

With that caveat, a few rules−of−thumb may be useful in selecting respa settings. The following applies
mostly to biomolecular simulations using the CHARMM or a similar all−atom force field, but the concepts
are adaptable to other problems. Without SHAKE, bonds involving hydrogen atoms exhibit high−frequency
vibrations and require a timestep on the order of 0.5 fmsec in order to conserve energy. The relatively
inexpensive force computations for the bonds, angles, impropers, and dihedrals can be computed on this
innermost 0.5 fmsec step. The outermost timestep cannot be greater than 4.0 fmsec without risking energy
drift. Smooth switching of forces between the levels of the rRESPA hierarchy is also necessary to avoid drift,
and a 1−2 angstrom "healing distance" (the distance between the outer and inner cutoffs) works reasonably
well. We thus recommend the following settings for use of the respa style without SHAKE in biomolecular
simulations:

timestep 4.0
run_style respa 4 2 2 2 inner 2 4.5 6.0 middle 3 8.0 10.0 outer 4

With these settings, users can expect good energy conservation and roughly a 2.5 fold speedup over the verlet
style with a 0.5 fmsec timestep.

If SHAKE is used with the respa style, time reversibility is lost, but substantially longer time steps can be
achieved. For biomolecular simulations using the CHARMM or similar all−atom force field, bonds involving
hydrogen atoms exhibit high frequency vibrations and require a time step on the order of 0.5 fmsec in order to
conserve energy. These high frequency modes also limit the outer time step sizes since the modes are coupled.
It is therefore desireable to use SHAKE with respa in order to freeze out these high frequency motions and

run_style command 187

increase the size of the time steps in the respa hierarchy. The following settings can be used for biomolecular
simulations with SHAKE and rRESPA:

fix 2 all shake 0.000001 500 0 m 1.0 a 1
timestep 4.0
run_style respa 2 2 inner 1 4.0 5.0 outer 2

With these settings, users can expect good energy conservation and roughly a 1.5 fold speedup over the verlet
style with SHAKE and a 2.0 fmsec timestep.

For non−biomolecular simulations, the respa style can be advantageous if there is a clear separation of time
scales − fast and slow modes in the simulation. Even a LJ system can benefit from rRESPA if the interactions
are divided by the inner, middle and outer keywords. A 2−fold or more speedup can be obtained while
maintaining good energy conservation. In real units, for a pure LJ fluid at liquid density, with a sigma of 3.0
angstroms, and epsilon of 0.1 Kcal/mol, the following settings seem to work well:

timestep 36.0
run_style respa 3 3 4 inner 1 3.0 4.0 middle 2 6.0 7.0 outer 3

Restrictions: none

Whenever using rRESPA, the user should experiment with trade−offs in speed and accuracy for their system,
and verify that they are conserving energy to adequate precision.

Related commands:

timestep, run

Default:

run_style verlet

(Tuckerman) Tuckerman, Berne and Martyna, J Chem Phys, 97, p 1990 (1992).

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

set command

Syntax:

set group−ID style value

group−ID = ID of group•
style = atom or bond or angle or dihedral or improper or charge or dipole•
value = value to set selected atoms to•

Examples:

set solvent atom 2
set edge bond 4
set half charge 0.5

set command 188

http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Set an attribute for atoms in the group. Since these attributes are assigned by the read_data, read_restart or
create_atoms commands, this command changes those assignments. This can be useful for altering pairwise
and molecular force interactions, since force−field coefficients are defined in terms of types. It can also be
used to change the labeling of atoms when they are output in dump files.

For style atom, the atom type of all atoms in the group is changed to the specified value from 1 to ntypes.
Note that ntypes must be within the range the simulation was initialized for. The maximum number of types is
set by the create_box command or the atom types field in the header of the data file read by the read_data
command.

For style bond, angle, dihedral, or improper, the bond type (angle type, etc) of all bonds (angles, etc) of atoms
in the group is changed to the specified value from 1 to nbondtypes (angletypes, etc). All atoms in the bond
(angle, etc) must be in the group in order for the change to be made. The maximum number of types is set by
the bond types (angle types, etc) field in the header of the data file.

For style charge, the charge of each atom in the group is set to the specified value.

For style dipole, the specified value is used as a random number seed. The dipole moment of each atom in the
group is set to a random orientation with a magnitude determined by the dipole command setting for that atom
type.

Restrictions:

This command requires inter−processor communication to coordinate the setting of bond types (angle types,
etc). This means that pairwise force cutoffs must be already be set before using this command, so that each
processor can acquire the correct atoms. This is not necessary to reset atom types.

Related commands:

create_box, create_atoms, read_data

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

special_bonds command

Syntax:

special_bonds style
special_bonds c1 c2 c3
special_bonds c1 c2 c3 c4 c5 c6

style = charmm or amber•
c1,c2,c3,c4,c5,c6 = numeric coefficients from 0.0 to 1.0•

Examples:

special_bonds charmm

special_bonds command 189

http://www.cs.sandia.gov/~sjplimp/lammps.html

special_bonds amber
special_bonds 0.0 0.0 1.0
special_bonds 0.0 0.0 1.0 0.0 0.0 0.5

Description:

Set the weighting coefficients for the pairwise force and energy contributions from atom pairs that are also
bonded to each other directly or indirectly. The 1st coefficient is the weighting factor on 1−2 atom pairs,
which are those directly bonded to each other. The 2nd coefficient is the weighting factor on 1−3 atom pairs
which are those separated by 2 bonds (e.g. the 2 H atoms in a water molecule). The 3rd coefficient is the
weighting factor on 1−4 atom pairs which are separated by 3 bonds (e.g. the 1st and 4th atoms in a dihedral
interaction).

1−3, and 1−4 interactions are not computed using the list of angles and dihedrals defined in the simulation.
Rather, they are inferred by the set of defined bonds. This distinction is important to remember if bonds are
removed at some point during a simulation. Also note that turning off a bond (as opposed to removing it) does
not change the inference of 1−2, 1−3, and 1−4 neighbors. See the delete_bonds command for more details.

The charmm style sets all 3 coefficients to 0.0, which is the default for the CHARMM force field. In pair
styles lj/charmm/coul/charmm and lj/charmm/coul/long the 1−4 coefficients are defined explicitly, and these
pair−wise contributions are computed in the charmm dihedral style − see the pair_coeff and dihedral_style
commands for more information.

The amber style sets the 3 coefficients to 0.0 0.0 0.5 for LJ interactions and to 0.0 0.0 0.833 for Coulombic
interactions, which is the default for a particular version of the AMBER force field, where the last value is
5/6.

A special_bonds command with 3 coefficients sets the 1−2, 1−3, and 1−4 coefficients for both LJ and
Coulombic terms to those values.

A special_bonds command with 6 coefficients sets the 1−2, 1−3, and 1−4 LJ coefficients to the first 3 values
and the Coulombic coefficients to the last 3 values.

Restrictions: none

Related commands:

delete_bonds

Default:

special_bonds 0.0 0.0 0.0

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

temp_modify command

Syntax:

temp_modify temp−ID keyword value ...

temp_modify command 190

http://www.cs.sandia.gov/~sjplimp/lammps.html

temp−ID = ID of temperature to modify•
one or more keyword/value pairs may be listed•
keyword = extra

extra value = N
 N = # of extra degrees of freedom to subtract

•

Examples:

temp_modify mine extra 0

Description:

Modify the parameters of a previously defined temperature command.

The extra keyword refers to how many degrees−of−freedom are subtracted from 3N as a normalizing factor in
the temperature computation. The default is 3 which is a correction factor for an ensemble of velocities with
zero total linear momentum.

Restrictions: none

Related commands:

temperature

Default:

The option defaults are extra = 3.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

temper command

Syntax:

temper N M temp fix−ID seed1 seed2 index

N = total # of timesteps to run•
M = attempt a tempering swap every this many steps•
temp = initial temperature for this ensemble•
fix−ID = ID of the fix that will control temperature during the run•
seed1 = random # seed used to decide on adjacent temperature to partner with•
seed2 = random # seed for Boltzmann factor in Metropolis swap•
index = which temperature (0 to N−1) I am simulating (optional)•

Examples:

temper 100000 100 $t tempfix 0 58728
temper 40000 100 $t tempfix 0 32285 $w

Description:

temper command 191

http://www.cs.sandia.gov/~sjplimp/lammps.html

Run a parallel tempering (replica exchange) simulation of multiple ensembles of a system on multiple
partitions of processors. The processor partitions are defined using the −partition command−line switch (see
this section). Each ensemble's temperature is typically controlled at a different value by a fix with ID fix−ID
that controls temperature. Possible fix styles are nvt, npt, and temp/rescale. The desired temperature is
specified by temp, which is typically a variable previously set in the input script, so that each partition is
assigned a different temperature. For example,

variable t proc 300.0 310.0 320.0 330.0

As the tempering simulation runs for N timesteps, a swap between adjacent ensembles will be attempted every
M timesteps. If seed1 is 0, then the swap attempts will alternate between odd and even pairings. If seed1 is
non−zero then it is used as a seed in a random number generator to randomly choose an odd or even pairing
each time. Each attempted swap of temperatures is either accepted or rejected based on a
Boltzmann−weighted Metropolis criterion which uses seed2 in the random number generator.

The last argument index is optional and is used when restarting a tempering run from a set of restart files (one
for each replica) which had previously swapped to new temperatures. The index value (from 0 to N−1, where
N is the # of replicas) identifies which temperature the replica was simulating on the timestep the restart files
were written. Obviously, this argument must be a variable so that each partition has the correct value. Set the
variable to the N values listed in the log file for the previous run for the replica temperatures at that timestep.
For example if the log file listed

500000 2 4 0 1 3

then a setting of

variable w proc 2 4 0 1 3

would be used to restart the run with a tempering command like the example above with $w as the last
argument.

Restrictions: none

Related commands:

variable

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

temperature command

Syntax:

temperature ID group−ID style args keyword value ...

ID = user−assigned name for the temperature•
group−ID = ID of group of atoms to compute the temperature for•
style = full or partial or ramp or region•

temperature command 192

http://www.cs.sandia.gov/~sjplimp/lammps.html

full args = none
partial args = x y z

 x,y,z = 0 or 1
ramp args = vdim vlo vhi dim clo chi

 vdim = vx or vy or vz
 vlo,vhi = subtract velocities between vlo and vhi (velocity units)
 dim = x or y or z
 clo,chi = lower and upper bound of domain to
 subtract from (distance units)

region args = region−ID

zero or more keyword/value pairs may be appended to the args•
keyword = units

units value = lattice or box

•

Examples:

temperature mine peptide full
temperature new flow partial 1 1 0
temperature 2 all region border
temperature 2nd middle ramp vx 0 8 y 2 12 units lattice

Description:

Define a method for computing the temperature of a group of atoms.

The ID of the temperature can be referred to in other commands which perform or modify temperature
computations: thermo_modify, velocity, fix_modify, temp_modify.

The style determines how the temperature is computed. The full style means KE = dim/2 N k T, where KE =
total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation,
N = number of atoms in the group, k = Boltzmann constant, and T = temperature.

The partial style uses the same formula as full, except entire dimensions can be eliminated from the kinetic
energy computation. This can be useful for systems where atoms are flowing, and only the thermal
temperature in the non−flow directions is desired. A "0" means do not use the component of velocity in that
dimension when computing KE. In the example above with arguments 1 1 0, only x and y velocities (not z)
would be used in computing KE and temperature.

The ramp style can be used to eliminate an imposed velocity on a system before computing thermal KE. The
meaning of these arguments is the same as for the velocity command which was presumably used to impose
the velocity.

The region style will compute the temperature of the atoms that are both in the group and in the region
volume of the specified region ID. This is useful for thermostatting on a varying set of atoms that fall within a
geometric region of the simulation domain, where those atoms can change from one timestep to the next.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi) defined for the ramp style. A box value selects standard distance units as defined by the units
command, e.g. Angstroms for units = real or metal. A lattice value means the distance units are in cubic lattice
spacings; e.g. lattice spacings / tau. The lattice command must first be used to define a lattice.

A temperature with ID = default is pre−defined by LAMMPS and uses to a full style computation on the all

temperature command 193

group of atoms. All operations in LAMMPS that compute temperatures use the default ID unless the input
script changes it.

Restrictions: none

Related commands:

thermo_modify, velocity, fix_modify, temp_modify

Default:

A temperature with ID = default is defined by LAMMPS, as if it had been specified as "temperature default
all full". The option default is units = lattice.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo command

Syntax:

thermo N

N = output thermodynamics every N timesteps•

Examples:

thermo 100

Description:

Compute and print thermodynamics (temperature, energy, pressure) every N timesteps. A value of 0 will only
compute thermodynamics at the beginning and end of a simulation.

Restrictions: none

Related commands:

thermo_style, thermo_modify

Default:

thermo 0

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo_modify command

Syntax:

thermo_modify keyword value ...

thermo command 194

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

one or more keyword/value pairs may be listed•
keyword = temp or lost or norm or flush

temp value = ID of temperature
lost value = error or warn or ignore
norm value = yes or no
flush value = yes or no

•

Examples:

thermo_modify temp mydef
thermo_modify lost no flush yes

Description:

Set options for how thermodynamics are computed by LAMMPS. Different ways to compute temperature can
be defined by the user (see the temperature command). The temp option allows you to specify which
temperature computation will be used when thermodynamic info that uses temperature is computed and
displayed (temperature, kinetic energy, pressure).

The lost option determines whether LAMMPS checks for lost atoms each time it computes thermodynamics
and what it does if atoms are lost. If the value is ignore, LAMMPS does not check for lost atoms. If the value
is error or warn, LAMMPS checks and either issues an error or warning. The code will exit with an error and
continue with a warning. This can be a useful debugging option.

The norm option determines whether the thermodynamic print−out is normalized by the number of atoms or is
the total summed across all atoms. Different atom styles have different defaults for this setting.

The flush option invokes a flush operation after thermodynamic info is written to the log file. This insures the
output in that file is current (no buffering by the OS), even if LAMMPS halts before the simulation completes.

Restrictions: none

Related commands:

thermo, thermo_style, temperature

Default:

The option defaults are temp = default, lost = error, norm = no for unit style of lj, norm = yes for unit style of
real and metal, flush = no.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo_style command

Syntax:

thermo_style style

style = one or multi or granular•

thermo_style command 195

http://www.cs.sandia.gov/~sjplimp/lammps.html

Examples:

thermo_style multi

Description:

Set the style in which thermodynamic data is printed to the screen and log file. Style one prints a one−line
summary. All intra−molecular energy is included in E_bond. Style multi prints 4 or 5 lines with a detailed
energy breakdown. Style granular is used with atom style granular.

Restrictions: none

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

The granular style is part of the "granular" package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

thermo, thermo_modify

Default:

thermo_style one

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

timestep command

Syntax:

timestep dt

dt = timestep size (time units)•

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent molecular dynamics simulations. See the units command for a discussion
of time units.

When the run style is respa, dt is the timestep for the outer loop (largest) timestep.

Restrictions: none

Related commands:

timestep command 196

http://www.cs.sandia.gov/~sjplimp/lammps.html

run, run_style respa

Default:

timestep = 0.005 tau for units = lj
timestep = 1.0 fmsec for units = real
timestep = 0.001 psec for units = metal

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

undump command

Syntax:

undump dump−ID

dump−ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Turn off a previously defined dump so that it is no longer active. This closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

unfix command

Syntax:

unfix fix−ID

fix−ID = ID of a previously defined fix•

Examples:

unfix 2
unfix lower−boundary

undump command 197

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

Description:

Turn off a fix that was previously defined with a fix command.

Restrictions: none

Related commands:

fix

Default: none

LAMMPS WWW Site − LAMPS Documentation − LAMMPS Commands

units command

Syntax:

units style

style = lj or real or metal•

Examples:

units metal
units lj

Description:

This command sets the style of units used for a simulation. It detemines the units of all quantities specified in
the input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this
command is used at the very beginning of an input script.

For style lj, all quantities are unitless:

distance = sigma•
time = tau•
mass = one•
energy = epsilon•
velocity = sigma/tau•
force = epsilon/sigma•
temperature = reduced LJ temperature•
pressure = reduced LJ pressure•
charge = reduced LJ charge•
electric field = force/charge•

For style real, these are the units:

distance = Angstroms•
time = femtoseconds•
mass = grams/mole•

units command 198

http://www.cs.sandia.gov/~sjplimp/lammps.html

energy = Kcal/mole•
velocity = Angstroms/femtosecond•
force = Kcal/mole−Angstrom•
temperature = degrees K•
pressure = atmospheres•
charge = multiple of electron charge (+1.0 is a proton)•
electric field = volts/Angstrom•

For style metal, these are the units:

distance = Angstroms•
time = picoseconds•
mass = grams/mole•
energy = eV•
velocity = Angstroms/picosecond•
force = eV/Angstrom•
temperature = degrees K•
pressure = bars•
charge = multiple of electron charge (+1.0 is a proton)•
electric field = volts/Angstrom•

This command also sets the timestep size and neighbor skin distance to default values for each style. For style
lj these are dt = 0.005 tau and skin = 0.3 sigma. For style real these are dt = 1.0 fmsec and skin = 2.0
Angstroms. For style metal these are dt = 0.001 psec and skin = 2.0 Angstroms.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

Related commands: none

Default:

units lj

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

variable command

Syntax:

variable name style arg1 arg2 ...

name = single lower−case character, 'a' thru 'z'•
style = proc or index•
arg1 thru argN = list of text strings•

Examples:

variable x proc 1 2 3 4
variable t proc 300.0 310.0 320.0 330.0

variable command 199

http://www.cs.sandia.gov/~sjplimp/lammps.html

variable d index run1 run2 run3 run4 run5 run6 run7 run8

Description:

This command sets values for a variable name that can be substituted for in later input script commands. As
explained in this section, all occurences of $X in an input script line are treated as a variable, where X is a
single lower−case character from "a" to "z". Variables can also be set (with a single value) by using the
command−line switch −var; see this section for details.

For proc style variables, the −partition command−line switch must be used when LAMMPS is run; see this
section. All processors in the Ith partition will substitute the Ith argument for the variable $X. For example, in
a simulation with 4 partitions and the variables x and t defined as above, these commands

read_data data.peptide.$x
temper 100000 100 $t settemp 0 45928

will run a parallel tempering simulation at 4 temperatures, using 4 different data files as inputs.

The substitution behavior of index style variables depends on whether LAMMPS is running on a single
partition or multiple partitions. See this section for a discussion of the −partition command−line switch. See
the next command for a discussion of how substitutions take place in both scenarios.

If a variable command is encountered when the variable has already been defined, the command is ignored.
Thus allows an input script with a variable command to be processed multiple times; see the jump or include
commands. It also means that the use of the command−line switch −var will override a corresponding variable
setting in the input script.

Restrictions: none

Related commands:

next, jump, include, temper

Default: none

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

velocity command

Syntax:

velocity group−ID style args keyword value ...

group−ID = ID of group of atoms whose velocity will be changed•
style = create or set or scale or ramp or zero

create args = temp seed
 temp = temperature value (temperature units)
 seed = random # seed (8 digits or less)

set args = vx vy vz
 vx,vy,vz = velocity value or NULL (velocity units)

scale args = temp

•

velocity command 200

http://www.cs.sandia.gov/~sjplimp/lammps.html

 temp = temperature value (temperature units)
ramp args = vdim vlo vhi dim clo chi

 vdim = vx or vy or vz
 vlo,vhi = lower and upper velocity value (velocity units)
 dim = x or y or z
 clo,chi = lower and upper coordinate bound (distance units)

zero args = linear or angular
linear = zero the linear momentum
angular = zero the angular momentum

zero or more keyword/value pairs may be appended to the args•
keyword = dist or sum or mom or rot or temp or loop or units

dist value = uniform or gaussian
sum value = no or yes
mom value = no or yes
rot value = no or yes
temp value = temperature ID
loop value = all or local or geom
units value = box or lattice

•

Examples:

velocity all create 300.0 4928459 rot yes dist gaussian
velocity border set NULL 4.0 3.0 sum yes units box
velocity flow scale 300.0
velocity flow ramp lattice vx 0.0 5.0 y 5 20 temp mytemp
velocity all zero linear

Description:

Set or change the velocities of a group of atoms in one of several styles. For each style, there are required
arguments and optional keyword/value parameters. Not all options are used by each style. Each option has a
default as listed below.

The create style generates an ensemble of velocities using a random number generator with the specified seed
as the specified temperature.

The set style sets the velocities of all atoms in the group to the specified values. If any component is specified
as NULL, then it is not set.

The scale style computes the current temperature of the group of atoms and then rescales the velocities to the
specified temperature.

The ramp style is similar to that used by the temperature ramp command. Velocities ramped uniformly from
vlo to vhi are applied to dimension vx, or vy, or vz. The value assigned to a particular atom depends on its
relative coordinate value (in dim) from clo to chi. For the example above, an atom with y−coordinate of 10
(1/4 of the way from 5 to 20), would be assigned a x−velocity of 1.25 (1/4 of the way from 0.0 to 5.0). Atoms
outside the coordinate bounds (less than 5 or greater than 20 in this case), are assigned velocities equal to vlo
or vhi (0.0 or 5.0 in this case).

The zero style adjusts the velocities of the group of atoms so that the aggregate linear or angular momentum is
zero. No other changes are made to the velocities of the atoms.

All temperatures specified in the velocity command are in temperature units; see the units command. The
units of velocities and coordinates depend on whether the units keyword is set to box or lattice, as discussed

velocity command 201

below.

The keyword/value option pairs are used in the following ways by the various styles.

The dist option is used by create. The ensemble of generated velocities can be a uniform distribution from
some minimum to maximum value, scaled to produce the requested temperature. Or it can be a gaussian
distribution with a mean of 0.0 and a sigma scaled to produce the requested temperature.

The sum option is used by all styles, except zero. The new velocities will be added to the existing ones if sum
= yes, or will replace them if sum = no.

The mom and rot options are used by create. If mom = yes, the linear momentum of the newly created
ensemble of velocities is zeroed; if rot = yes, the angular momentum is zeroed.

The temp option is used by create and scale to specify a user−defined temperature computation. If this option
is not used, the default temperature (which has style full) is computed for the group of atoms specified in the
velocity command. If the temperature should have degrees−of−freedom removed due to SHAKE constraints,
then the appropriate fix shake command must be specified before the velocity command is issued.

The loop option is used by create. If loop = all, then each processor loops over all atoms in the simulation to
create velocities, but only stores velocities for atoms it owns. This can be a slow loop for a large simulation. It
will produce the same set of velocities, independent of the number of processors, if atoms were read from a
data file. It will not produce such independent velocities if atoms were created using the create_atoms
command. If loop = local, then each processor loops over only its atoms to produce velocities. The random
number seed is adjusted to give a different set of velocities on each processor. This is a fast loop, but will
always produce different sets of velocities when a simulation is run on a different number of processors. If
loop = geom, then each processor loops over only its atoms. For each atom a unique random number seed is
created, based on the atom's xyz coordinates. A velocity is generated using that seed. This is a fast loop and
will always give the same set of velocities, independent of how many processors are used. However, the
generated velocities may be more correlated than if the all or local options are used. Note that the loop geom
option will not necessarily assign identical velocities for two simulations run on different machines. This is
because the computations based on xyz coordinates are sensitive to tiny differences in the double−precision
value for a coordinate as stored on a particular machine.

The units option is used by set and ramp. If units = box, the velocities and coordinates specified in the
velocity command are in the standard units described by the units command (e.g. Angstroms/fmsec for real
units). If units = lattice, velocities are in units of lattice spacings per time (e.g. spacings/fmsec) and
coordinates are in lattice spacings. The lattice command must have been previously used to define the lattice
spacing.

For all styles, no atoms are assigned z−component velocities if the simulation is 2d; see the dimension
command.

Restrictions: none

Related commands:

fix shake, lattice

Default:

velocity command 202

The option defaults are dist = uniform, sum = no, mom = yes, rot = no, temp = default, loop = all, and units =
lattice.

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

write_restart command

Syntax:

write_restart file

file = name of file to write restart information to•

Examples:

write_restart restart.equil

Description:

Write a binary restart file of the current state of the simulation. See the read_restart command for information
about what is stored in a restart file.

During a long simulation, the restart command is typically used to dump restart files periodically. The
write_restart command is useful after a minimization or whenever you wish to write out a single current
restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the
file is binary (to enable exact restarts), it may not be readable on another machine. In this case, the restart2data
program in the tools directory can be used to convert a restart file to an ASCII data file.

Restrictions: none

Related commands:

restart, read_restart

Default: none

write_restart command 203...1

http://www.cs.sandia.gov/~sjplimp/lammps.html

	Table of Contents
	
	LAMMPS Documentation
	1. Introduction
	2. Getting Started
	3. Commands
	4. How-to discussions
	5. Example problems
	6. Performance &scalability
	7. Additional tools
	8. Modifying &extending LAMMPS
	9. Errors
	10. Future and history
	angle_coeff command
	angle_style command
	atom_modify command
	atom_style command
	bond_coeff command
	bond_style command
	boundary command
	cd command
	clear command
	create_atoms command
	create_box command
	delete_atoms command
	delete_bonds command
	dielectric command
	dihedral_coeff command
	dihedral_style command
	dimension command
	dipole command
	displace_atoms command
	dump command
	dump_modify command
	echo command
	fix command
	fix addforce command
	fix aveforce command
	fix com command
	fix drag command
	fix efield command
	fix enforce2d command
	fix freeze command
	fix gran/diag command
	fix gravity command
	fix indent command
	fix insert command
	fix langevin command
	fix lineforce command
	fix_modify command
	fix msd command
	fix nph command
	fix npt command
	fix nve command
	fix nve/gran command
	fix nvt command
	fix planeforce command
	fix rdf command
	fix rigid
	fix setforce command
	fix shake style
	fix spring command
	fix temp/rescale command
	fix tmd command
	fix viscous command
	fix volume/rescale command
	fix wall/gran command
	fix wall/93 command
	fix wiggle command
	group command
	improper_coeff command
	improper_style command
	include command
	jump command
	kspace_modify command
	kspace_style command
	lattice command
	log command
	mass command
	neigh_modify command
	neighbor command
	newton command
	next command
	orient command
	origin command
	pair_coeff command
	pair_modify command
	pair_style command
	pair_write command
	processors command
	read_data command
	read_restart command
	region command
	replicate command
	reset_timestep command
	restart command
	run command
	run_style command
	set command
	special_bonds command
	temp_modify command
	temper command
	temperature command
	thermo command
	thermo_modify command
	thermo_style command
	timestep command
	undump command
	unfix command
	units command
	variable command
	velocity command
	write_restart command

