LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform command

Syntax:

compute ID group-ID temp/deform 

Examples:

compute myTemp all temp/deform 

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming velocity induced by the simulation box changing size and/or shape, for example in a non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting purposes. A compute of this style can also be used by any command that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each point in the simulation box can be thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then points at the bottom of the box (low y) have a small x velocity, while points at the top of the box (hi y) have a large x velocity. This position-dependent streaming velocity is subtracted from each atom's actual velocity to yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the changing simulation box. To use this compute, fix deform should NOT remap atom positions, but rather should let atoms respond to the changing box by adjusting their own velocities (or let fix deform remap the atom velocities). If fix deform does remap atom positions, their velocity is not changed, and thus they do not have the streaming velocity assumed by this compute. LAMMPS will warn you if the fix deform setting is not consistent with this compute.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T = temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A 6-component kinetic energy tensor is also calculated by this compute for use in the computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that v^2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the compute_modify command.

Restrictions: none

Related commands:

compute temp/ramp, fix deform, fix nvt/sllod

Default: none