Syntax:
dihedral_style class2
Examples:
dihedral_style class2 dihedral_coeff 1 100 75 100 70 80 60 dihedral_coeff * mbt 3.5945 0.1704 -0.5490 1.5228 dihedral_coeff * ebt 0.3417 0.3264 -0.9036 0.1368 0.0 -0.8080 1.0119 1.1010 dihedral_coeff 2 at 0.0 -0.1850 -0.7963 -2.0220 0.0 -0.3991 110.2453 105.1270 dihedral_coeff * aat -13.5271 110.2453 105.1270 dihedral_coeff * bb13 0.0 1.0119 1.1010
Description:
The class2 dihedral style uses the potential
where Ed is the dihedral term, Embt is a middle-bond-torsion term, Eebt is an end-bond-torsion term, Eat is an angle-torsion term, Eaat is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.
Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.
See (Sun) for a description of the COMPASS class2 force field.
Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas must be defined for each dihedral type via the dihedral_coeff command as in the example above, or in the data file or restart files read by the read_data or read_restart commands.
These are the 6 coefficients for the Ed formula:
For the Embt formula, each line in a dihedral_coeff command in the input script lists 5 coefficients, the first of which is "mbt" to indicate they are MiddleBondTorsion coefficients. In a data file, these coefficients should be listed under a "MiddleBondTorsion Coeffs" heading and you must leave out the "mbt", i.e. only list 4 coefficients after the dihedral type.
For the Eebt formula, each line in a dihedral_coeff command in the input script lists 9 coefficients, the first of which is "ebt" to indicate they are EndBondTorsion coefficients. In a data file, these coefficients should be listed under a "EndBondTorsion Coeffs" heading and you must leave out the "ebt", i.e. only list 8 coefficients after the dihedral type.
For the Eat formula, each line in a dihedral_coeff command in the input script lists 9 coefficients, the first of which is "at" to indicate they are AngleTorsion coefficients. In a data file, these coefficients should be listed under a "AngleTorsion Coeffs" heading and you must leave out the "at", i.e. only list 8 coefficients after the dihedral type.
Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of D and E are in energy/radian.
For the Eaat formula, each line in a dihedral_coeff command in the input script lists 4 coefficients, the first of which is "aat" to indicate they are AngleAngleTorsion coefficients. In a data file, these coefficients should be listed under a "AngleAngleTorsion Coeffs" heading and you must leave out the "aat", i.e. only list 3 coefficients after the dihedral type.
Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of M are in energy/radian^2.
For the Ebb13 formula, each line in a dihedral_coeff command in the input script lists 4 coefficients, the first of which is "bb13" to indicate they are BondBond13 coefficients. In a data file, these coefficients should be listed under a "BondBond13 Coeffs" heading and you must leave out the "bb13", i.e. only list 3 coefficients after the dihedral type.
Restrictions:
This dihedral style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS section for more info on packages.
Related commands:
Default: none
(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).