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1 Introduction

Moltemplate is a cross-platform text-based molecule builder for LAMMPS.
It is typically used for building coarse-grained toy molecular models. Moltem-
plate users have access to (nearly) all of the standard and non-standard
(custom, user-created) force-field and features available in LAMMPS.

(Although optimized for LAMMPS, moltemplate is a general text manip-
ulation tool which, in principle, could be used to generate topology and force-
field files for other simulation programs. Please email if
you want to attempt this.)

A file format has been created to store molecule definitions (the LAMMPS-
template format, ”LT”). Typical ”.LT” files contain atom coordinates,
topology data (bonds), LAMMPS force-field data, and other LAMMPS set-
tings (such as group definitions, fixes, and user-defined input files) for a type
of molecule (or a molecular subunit). Molecules can be copied, combined,
and linked together to define new molecules. (These can be used to define
larger molecules. Unlimited levels of object composition, nesting, and in-
heritance are supported.) Once built, individual molecules and subunits can
be customized (atoms and bonds, and subunits can be moved, deleted and
replaced).

Moltemplate requires the Bourne-shell, and a recent version of python
(2.7 or 3.0 or higher), and can run on OS X, linux, or windows (if a suitable
shell environment has been installed).

1.1 Converting LT files to LAMMPS input/data files

The moltemplate.sh program converts LT-files (which contain molecule def-
initions) into complete LAMMPS input-scripts and data-files:
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moltemplate.sh -atomstyle "full" system.lt

or

moltemplate.sh -xyz coords.xyz -atomstyle "full" system.lt

In the first example, the coordinates of the atoms in the system are built from
commands inside the ”system.lt” file. In the second example coordinates for
the atoms are read from an XYZ-file (PDB-files are also supported). (The
”full” atom style was used in this example, but other LAMMPS atom styles
are supported, including hybrid styles.)

Either of these commands will construct a LAMMPS data file and a
LAMMPS input script (and possibly one or more auxiliary input files), which
can be directly run in LAMMPS with minimal editing.

1.2 Converting LAMMPS input/data files to LT files

Existing LAMMPS input/data files can be converted into “.LT” files using
the “ltemplify.py” utility. (See appendix B.)

Additional tools

The VMD topotools plugin [1] is useful for converting PDB files into LAMMPS
format. These files can then be converted to “LT” format using the “ltem-
plify.py” utility. VMD [2] and topotools are also useful for visualizing the
data files created by moltemplate.sh. (Documentation for doing this is in-
cluded in the online examples discussed below.)

The PACKMOL [3] program is useful for generating coordinates of dense
heterogeneous mixtures of molecules, which can be read by moltemplate.
(The VMD “solvate” plugin may also be helpful.)

Online examples

This manual explains how to use moltemplate.sh to build LAMMPS files
from scratch, but it does not discuss how to run LAMMPS or how to visu-
alize the results.

This manual assumes users have some basic familiarity with LAMMPS.
For users who are not familiar with LAMMPS, several complete, working

examples (with images and readme files) are available online (at http://

moltemplate.org) which can be downloaded and modified. These examples
are a good starting point for learning LAMMPS and moltemplate.

License

Moltemplate.sh is publicly available at http://moltemplate.org under the
terms of the open-source 3-clause BSD license. http://www.opensource.

org/licenses/BSD-3-Clause
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2 Installation

If you don’t already have moltemplate, the first step of the installation is to
download and unpack the moltemplate archive. The most up-to-date version
of moltemplate can always be downloaded at: http://www.moltemplate.

org and unpacked using:

tar xzf moltemplate_2012-3-31.tar.gz

(The date will vary from version to version.)
Alternately, if you obtained moltemplate bundled with LAMMPS, then

the “moltemplate” directory will probably be located in the “tools” subdi-
rectory of your lammps installation.

If necessary, move the “moltemplate” directory to its desired location.
(For the sake of this example, let’s assume you move it to: “$HOME/moltemplate”.)

The “moltemplate.sh” script and the python scripts it invokes are lo-
cated in the “src” subdirectory. You should update your PATH environment
variable to include this directory. You also need to set your MOLTEM-
PLATE PATH environment variable to point to the “common” subdirec-
tory. (Force fields and commonly used molecules will eventually be located
here.)

If you use the bash shell, typically you would edit your ∼/.bash profile,
∼/.bashrc, or ∼/.profile files to contain the following lines:

export PATH="$PATH:$HOME/moltemplate/src"

export MOLTEMPLATE_PATH="$HOME/moltemplate/common"

If you use the tcsh shell, typically you would edit your ∼/.login, ∼/.cshrc,
or ∼/.tcshrc files to contain the following lines:

setenv PATH "$PATH:$HOME/moltemplate/src"

setenv MOLTEMPLATE_PATH "$HOME/moltemplate/common"
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3 Quick reference (skip on first reading)

Note: New users should skip to section 4

3.1 Moltemplate commands

command meaning

MolType {

content ...

}

Define a new type of molecule (or namespace) named
MolType. The text enclosed in curly brackets (con-
tent) typically contains multiple write(), write once()
commands to define Atoms, Bonds, Angles, Coeffs,
etc... (If that molecule type exists already, then this
will append additional content to its definition.) new
and delete commands can be used to create or delete
molecular subunits within this molecule. (See the
SPCE, 2bead, and Butane molecules, and the TraPPE
namespace defined in sections 4.1, 6.1, 11.8, & 11.4.1.

mol name = new MolType Create (instantiate) a copy of a molecule of type
MolType and name it mol name. (See section 4.1.)

mol name = new MolType.xform() Create a copy of a molecule and apply coordinate
transformation xform() to its coordinates. (See sec-
tions 4.2 and 3.3.)

molecules = new MolType [N ].xform() Create N copies of a molecule of type MolType and
name them molecules[0], molecules[1], molecules[2]...
Coordinates in each successive copy are cumulatively
transformed according to xform(). (See sections 4.2,
7.1 and 3.3.) Multidimensional arrays are also allowed.
(See section 9.)

molecules = new MolType.xform1()
[N ].xform2()

Apply coordinate transformations (xform1() to
MolType, before making N copies of it while cumu-
latiely applying xform2(). (See section 7.1 and 7.3.)

molecules = new
random([M1.xf1(),

M2.xf2(),
M3.xf2(),...],
[p1, p2, p3,...],
seed)

[N ].xform()

Generate an array of N molecules randomly selected
from M1,M2,M3,... with probabilities p1, p2, p3..., us-
ing (optional) initial coordinate transformations xf1(),
xf2(), xf3, ..., and applying transformation xform()
cumulatively thereafter. This also works with multi-
dimensional arrays. (See sections 7.4 and 9.2.)

NewMol = OldMol Create a new molecule type based on an exist-
ing molecule type. Additional atoms (or bonds,
etc...) can be added later to the new molecule using
NewMol {more content...}. (See section 10.)

NewMol = OldMol.xform() Create a new molecule type based on an existing
molecule type, and apply coordinate transformation
xform() to it. (See section 10. This feature is experi-
mental as of 2012-9-28.)
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NewMol inherits Mol1 Mol2 ... {

additional content ...

}

Create a new molecule type based on multiple exist-
ing molecule types. Atom types, bond types, angle
types (etc) which are defined in Mol1, or Mol2, ... are
available inside the new molecule. Additional content
(including more write() or write once() or new com-
mands) follows within the curly brackets. (See sections
10, 11.8, and 11.8.1)

MolType.xform() Apply the coordinate transform xform() to the coor-
dinates of the atoms in all molecules of type MolType.
(See section 10. This feature is experimental as of
2012-9-28.)

molecule.xform() Apply the coordinate transform xform() to the coordi-
nates in molecule. (Here molecule refers to a specific
instance or copy of a particular molecule type. See
sections 8 and 4.2.)

molecules[range].xform() Apply the coordinate transform xform() to the coordi-
nates of molecules specified by molecule[range]. (This
also works for multidimensional arrays. See sections
7.5 and 8.)

delete molecule Delete the molecule copy. (This command can ap-
pear inside a molecule’s definition to delete a specific
molecular subunit within a molecule. In that case,
it will be carried out in every copy of that molecule
type. delete can also be used to delete specific atoms,
bonds, angles, dihedrals, and improper interactions.)
See section 8.3.

delete molecules[range] Delete a range of molecules specified by
molecule[range]. (This also works for multidi-
mensional arrays. See sections 8.3 and 9.4.)

write once(’file’) {
text ...

}

Write the text enclosed in curly brackets {. . .} to file
file. The text can contain @variables which are re-
placed by integers. (See sections 5.1 and 5.2.)

write(’file’) {
text ...

}

Write the text enclosed in curly brackets {. . .} to
file file. This is done every time a new copy of this
molecule is created using the “new” command. The
text can contain either @variables or $variables which
will be replaced by integers. (See sections 5.1 and 5.2.)

Note: file names beginning with “Data ” or “In ” (such as “Data Atoms” or “In Settings”) are
inserted into the relevant section of the LAMMPS data file or input script. (See section 5.4.)

include file Insert the contents of file file here. (Quotes optional.)

import file Insert the contents of file file here. This command
prevents circular inclusions and is safer to use.
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using namespace X This enables you to refer to any of the molecule types,
defined within a namespace object (X in this exam-
ple), without needing to refer to these objects by their
full path. (Unfortunately, atom types, or bond, angle,
dihedral, or improper types must still be referred to
explicitly, by their full path.) Note: a “namespace
object” is any object which lacks any write() or new
commands. (In other words, namespace objects define
atom types and/or molecule types without creating
any atoms or molecules. See section 11.7.)

category $catname(i0, ∆)
or
category @catname(i0, ∆)

Create a new variable category. See section C.2 for
details.

create var { variable } Create a variable locally (but do not write it to a file).
(Typically $mol is the variable. See section 6.1.1.)
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3.2 Common $ and @ variables

variable type meaning

$atom:name A unique ID number assigned to atom name in this molecule.
(Note: The :name suffix can be omitted if the molecule in which
this variable appears only contains a single atom.)

@atom:type A number which indicates an atom’s type (typically used to lookup
pair interactions.)

$bond:name A unique ID number assigned to bond name (Note: The :name
suffix can be omitted if the molecule in which this variable appears
only contains a single bond.)

@bond:type A number which indicates a bond’s type

$angle:name A unique ID number assigned to angle name (Note: The :name
suffix can be omitted if the molecule in which this variable appears
only contains a single angle interaction.)

@angle:type A number which indicates an angle’s type

$dihedral:name A unique ID number assigned to dihedral name (Note: The :name
suffix can be omitted if the molecule in which this variable appears
only contains a single dihedral-angle interaction.)

@dihedral:type A number which indicates a dihedral’s type

$improper:name A unique ID number assigned to improper name (Note: The :name
suffix can be omitted if the molecule in which this variable appears
only contains a single improper interaction.)

@improper:type A number which indicates an impropers’s type

$mol or $mol:. This variable refers to the ID number of this molecule object. (See
section 4.1. Note: “$mol” is shorthand for “$mol:.”)

$mol:... The ID number assigned to the molecule to which this object be-
longs (if applicable). See sections 6.1.1, 11.6 and appendix F.

$catname:query() Query the current value of the counter in category $catname (with-
out incrementing it. This is useful for counting the number of
atoms, bonds, angles, molecules, etc... created so far.)

@catname:query() Query the current value of the counter in category @catname
(without incrementing it. This is useful for counting the number
of atom types, bond types, angle types, etc... declared so far.)

See section 5.2 for details.
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3.3 Coordinate transformations

suffix meaning

.move(x,y,z) Add numbers (x,y,z) to the coordinates of every atom

.rot(θ, x, y, z) Rotate atom coordinates by angle θ around axis (x,y,z) pass-
ing through the origin. (Dipole directions are also rotated.)

.rot(θ, x, y, z, x0, y0, z0) Rotate atom coordinates by angle θ around axis pointing in
the direction (x,y,z), passing through the point (x0, y0, z0).
(This point will be a fixed point. Dipole directions are also
rotated.)

.scale(ratio) Multiply all atomic coordinates by ratio. (Important: The
scale() command does not update force-field parameters such
as atomic radii or bond-lengths. Dipole magnitudes are af-
fected.)

.scale(xr, yr, zr) Multiply x, y, z coordinates by xr, yr, zr, respectively

.scale(ratio,x0, y0, z0) or

.scale(xr, yr, zr, x0, y0, z0)
You can supply 3 optional additional arguments x0, y0, z0
which specify the point around which you want the scaling
to occur. (This point will be a fixed point. Of omitted, the
origin is used.)

Note: Multiple transformations can be chained together into a compound operation.
(For example: “.scale(2.0).rotate(45.2, 1, 0, 0).move(25.0, 0, 0)”)

These are evaluated from left-to-right. (See section 7.1.)
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3.4 moltemplate.sh command line arguments:

argument meaning

-atomstyle style Inform moltemplate which atom style you are using. (style
is “full” by default). Other styles like “molecular” or “hybrid
full dipole” are supported. For custom atom styles, you can
also specify the list of column names manually (enclosed
in quotes). For example: -atomstyle ”molid x y z atomid
atomtype mux muy muz”

-pdb coords.pdb Read all of the atomic coordinates from an external PDB
file (Periodic boundary conditions are also read, if present.
See section 4.2.)

-xyz coords.xyz Read all of the atomic coordinates from an external XYZ
file (See section 4.2.)

-a ’variable value’ Assign variable to value. (The variable should begin with
either a @ or a $ character. Quotes and a space separator
are required. See appendix C.1.)

-a bindings file’ The variables in column 1 of bindings file (which is a text
file) will be assigned to the values in column 2 of that file.
(This is useful when there are many variable assignments to
make. See appendix C.1.)

-b ’variable value’
or

-b bindings file

Assign variables to values. Unlike assignments made with
“-a”, assignments made using “-b” are non-exclusive. (They
may overlap with other variables in the same category. See
appendix C.1.)

-overlay-bonds
-overlay-angles
-overlay-dihedrals
-overlay-impropers

By default moltemplate overwrites duplicate bonded inter-
actions which involve the same set of atoms. These flags
disable that behavior. This can be useful when you want to
superimpose multiple angular or dihedral forces on the same
set of atoms (eg. to enable more complex force fields).

-nocheck Do not check for common LAMMPS/moltemplate syntax
errors. (This might be useful when using moltemplate with
simulation software other than LAMMPS, or to build sys-
tems which need new non-standard LAMMPS features.)
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4 Introductory tutorial

Summary

Moltemplate is a very simple text generator (wrapper) which repetitively
copies short text fragments into one (or more) files and keeps track of various
kinds of counters. Moltemplate is (intentionally) ignorant about LAMMPS
and molecular dynamics in general. It is the user’s responsibility to under-
stand LAMMPS syntax and write LT files which obey it. Again, for users
who are new to LAMMPS, the easiest way to do this is to modify an existing
example.

4.1 Simulating a box of water using moltemplate and LAMMPS

Figure 1: Coordinates of a single water molecule in our example. (Atomic
radii not to scale.)

Here we show an example of a lammps-template file for water. (The
settings shown here are borrowed from the simple-point-charge [4] SPC/E
model.) In addition to coordinates, topology and force-field settings, “LT”
files can optionally include any other kind of LAMMPS settings including
SHAKE constraints, k-space settings, and even group definitions. (Unicode
is supported.)

# file "spce_simple.lt"

#

# H1 H2

# \ /

# O

SPCE {

# LAMMPS supports a large number of force-field styles. We must select

# which ones we need. This information belongs in the "In Init" section.

write_once("In Init") {

units real

atom_style full

pair_style lj/charmm/coul/long 9.0 10.0 10.0

bond_style harmonic

angle_style harmonic

kspace_style pppm 0.0001

pair_modify mix arithmetic

}
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# AtomID MolID AtomType charge coordX coordY coordZ

write("Data Atoms") {

$atom:O $mol @atom:O -0.8476 0.0000000 0.000000 0.000000

$atom:H1 $mol @atom:H 0.4238 0.8164904 0.5773590 0.00000

$atom:H2 $mol @atom:H 0.4238 -0.8164904 0.5773590 0.00000

}

# AtomType Mass

write_once("Data Masses") {

@atom:O 15.9994

@atom:H 1.008

}

# BondID BondType AtomID1 AtomID2

write("Data Bonds") {

$bond:OH1 @bond:OH $atom:O $atom:H1

$bond:OH2 @bond:OH $atom:O $atom:H2

}

# AngleID AngleType AtomID1 AtomID2 AtomID3

write("Data Angles") {

$angle:HOH @angle:HOH $atom:H1 $atom:O $atom:H2

}

# AtomType epsilon sigma

write_once("Data Pair Coeffs") {

@atom:O 0.1553 3.166

@atom:H 0.0 2.058

}

# BondType k r_0

write_once("Data Bond Coeffs") {

@bond:OH 200.00 1.0

}

# AngleType k theta_0

write_once("Data Angle Coeffs") {

@angle:HOH 200.0 109.47

}

write_once("In Settings") {

13



group spce type @atom:O @atom:H

fix fSHAKE spce shake 0.0001 10 100 b @bond:OH a @angle:HOH

# (Remember to "unfix" fSHAKE during minimization.)

}

} # SPCE

Words which are preceded by “$” or “@” characters are counter variables
and will be replaced by integers. (See section 5.2 for details.) Users can
include SPCE water in their simulations using commands like these:

# -- file "system.lt" --

import "spce_simple.lt"

wat = new SPCE [1000]

You can now use “moltemplate.sh” to create simulation input files for LAMMPS

moltemplate.sh -pdb coords.pdb -atomstyle "full" system.lt

This command will create lammps input files for the molecular system de-
scribed in “system.lt”, using the desired atom style (“full” by default). In
this example, moltemplate is relying on an external file (“coords.pdb”) to
supply the atomic coordinates of the water molecules, as well as the periodic
boundary conditions. Coordinates in XYZ format are also supported using
“-xyz coords.xyz”.

Details

Note that since XYZ files lack boundary information, you must also include
a “Boundary” section in your “.lt” file, as demonstrated in section 4.2. In
both cases, the order of the atom types in a PDB or XYZ file (after sorting)
should match the order they are created by moltemplate (which is determined
by the order of the “new” commands in the LT file). Unfortunately this may
require careful manual editing of the PDB or XYZ file.

4.2 Coordinate generation

It is not necessary to provide a separate file with atomic coordinates. It
is more common to manually specify the location (and orientation) of the
molecules in your system using the “.move()” and “.rot()” commands in the
LT file itself (discussed in section 6). For example you can replace the line:

wat = new SPCE [1000]

from the example above with 1000 lines:

wat1 = new SPCE

wat2 = new SPCE.move(3.450, 0.0, 0.0)

wat3 = new SPCE.move(6.900, 0.0, 0.0)

wat4 = new SPCE.move(10.35, 0.0, 0.0)

: :

wat1000 = new SPCE.move(34.50, 34.50, 34.50)
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Specifying geometry this way is tedious. Alternatively, moltemplate has
simple commands for arranging multiple copies of a molecule in periodic,
crystalline, toroidal, and helical 1-D, 2-D, and 3-D lattices. For example,
you can generate a simple cubic lattice of 10×10×10 water molecules (with
a 3.45 Angstrom spacing) using a single command (which in this example
we split into multiple lines)

wat = new SPCE [10].move(0,0,3.45)

[10].move(0,3.45,0)

[10].move(3.45,0,0)

(See section 6 for more details and examples.) This will create 1000 molecules
with names like “wat[0][0][0]”, “wat[0][0][1]”,. . ., “wat[9][9][9]”. You can
always access individual atomIDs, molIDs, bondIDs, angleIDs, and dihe-
dralIDs (if present), for any molecule elsewhere in your LT files using this no-
tation: “$atom:wat[2][3][4]/H1”, “$bond:wat[0][5][1]/OH1”, “$angle:wat[2][8][3]/HOH”,
“$mol:wat[0][1][2]”. This allows you to define interactions which link differ-
ent molecules together (see section 6).

A list of available coordinate transformations is provided in section 3.3.

Boundary Conditions:

LAMMPS simulations have finite volume and are usually periodic. We must
specify the dimensions of the simulation boundary using the “write once(“Data
Boundary”)” command.

write_once("Data Boundary") {

0.0 34.5 xlo xhi

0.0 34.5 ylo yhi

0.0 34.5 zlo zhi

}

This is usually specified in the outermost LT file (“system.lt” in this ex-
ample). (Note: Boundary conditions do not have to be rectangular or even
periodic. For triclinic cells, additional “xy”, “xz”, and “yz” tilt parameters
can be added. For details, lookup the “read data” and “boundary” commands
in the official LAMMPS documentation.)

This system is shown in figure 2a). After you have specified the geometry,
then you can run moltemplate.sh this way:

moltemplate.sh -atomstyle "full" system.lt

4.3 Running a LAMMPS simulation (after using moltem-
plate)

To run a simulation of one or more molecules, LAMMPS requires an in-
put script and a data file. Input scripts typically contain force field styles,
parameters and run settings. (They sometimes also contain atom coordi-
nates.) Data files typically contain atom coordinates and bonded topology
data. (They sometimes also contain force-field parameters.)
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a) b)

Figure 2: A box of 1000 water molecules (before and after pressure equili-
bration), generated by moltemplate and visualized by VMD with the topo-
tools plugin. (The VMD console commands used for visualization were:
“topo readlammpsdata system.data full”, “animate write psf system.psf”,
“pbc wrap -compound res -all”, and “pbc box”. See the online examples for
details.)

Moltemplate will create the following files: “system.data”, “system.in”,
“system.in.init”, “system.in.settings”, (and possibly other files including
“system.in.coords”). These are LAMMPS input/data files, and they can
be run in LAMMPS with minimal modification (see below). The main in-
put script file is named “system.in”, and it usually contains just three lines:

include "system.in.init"

read_data "system.data"

include "system.in.settings"

To run a simulation, you will have to edit this file in order to add a couple
of run commands. These commands tell LAMMPS about the simulation
conditions you want to use (temperature, pressure), how long to run the
simulation, how to integrate the equations of motion, and how to write the
results to a file (file format, frequency, etc). Moltemplate.sh can not do this
for you. Some simple examples (which you can paste into your input script)
are provided in the online examples which can be downloaded from http:

//moltemplate.org. (These example input scripts typically have names
like “run.in.nvt” and “run.in.npt”.)

5 Overview

5.1 Basics: The write() and write once() commands

Each LT file typically contains one or more “write” or “write once” com-
mands. These commands have the following syntax

write_once(filename) {text_block}

This creates a new file with the desired file name and fills it with the text
enclosed in curly brackets {}. Text blocks usually span multiple lines and
contain counter variables (beginning with “@” or “$”). which are replaced
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with numbers. However the “write()” command will repeatedly append the
same block of text to the file every time the molecule (in which the write
command appears) is generated or copied (using the “new” command, after
incrementing the appropriate counters, as explained in 5.2.2).

5.2 Basics: counter variables

Words following a “@” or a “$” character are counter variables. By default,
all counter variables are substituted with a numeric counter before they are
written to a file. These counters begin at 1 (by default), and are incremented
as the system size and complexity grows (see below).

These words typically contain a colon (:) followed by more text. The
text preceding this colon is the category name. (For example: “$atom:”,
“$bond:”, “$angle:”, “@atom:”, “@bond:”, “@angle:”) Variables belonging
to different categories are counted independently.

Users can override these assignment rules and create custom categories.
(See appendices C.1 and C.2 for details.)

(Unicode is supported.)

5.2.1 Static counters begin with “@”

“@” variables generally correspond to types: such as atom types, bond types,
angle types, dihedral types, improper types. These are simple variables and
they assigned to unique integers in the order they are read from your LT
files. Each uniquely named variable in each category is assigned to a different
integer. For example, “@bond:” type variables are numbered from “1” to
the number of bond types. (Pairs of bonded atoms are assigned a bond
type. Later, LAMMPS will use this integer to lookup the bond-length and
Hooke’s-law elastic constant describing the force between these two atoms.)

5.2.2 Instance counters begin with “$”

On the other hand, “$” variables correspond to unique ID numbers: atom-
IDs, bond-IDs, angle-IDs, dihedral-IDs, improper-IDs, and molecule-IDs.
These variables are created whenever a copy of a molecule is created (using
the “new” command). If you create 1000 copies of a water molecule using a
command like

wat = new SPCE[10][10][10]

then moltemplate creates 3000 “$atom” variables with names like

$atom:wat[0][0][0]/O

$atom:wat[0][0][0]/H1

$atom:wat[0][0][0]/H2

$atom:wat[0][0][1]/O

$atom:wat[0][0][1]/H1

$atom:wat[0][0][1]/H2

...
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$atom:wat[9][9][9]/O

$atom:wat[9][9][9]/H1

$atom:wat[9][9][9]/H2

5.2.3 Variable names: short-names vs. full-names

In the example above, the $ variables have full-names like “$atom:wat[8][3][7]/H1”,
not “$atom:H1”. However inside the definition of the water molecule, you
don’t specify the full name. You can refer to this atom as “$atom:H1”. Like-
wise, the full-name for the @atom variables is actually “@atom:SPCE/H”,
not “@atom:H”. However inside the definition of the water molecule, you
typically use the shorthand notation “@atom:H”.

5.2.4 Numeric substitution

Before being written to a file, every variable (either $ or @) with a unique
full-name will be assigned to a unique integer, starting at 1 by default.

The various $atom variables in the water example will be substituted
with integers from 1 to 3000 (assuming no other molecules are present).
But the “@atom:O” and “@atom:H” variables (which are shorthand for
“@atom:SPCE/O” and “@atom:SPCE/H”) will be assigned to to “1” and
“2” (again, assuming no other molecule types are present).

So, in summary, @ variables increase with the complexity of your system
(IE the number of molecule types or force-field parameters), but $ variables
increase with the size of your system.

5.2.5 Variable scope

This effectively means that all variables are specific to local molecules they
were defined in. In other words, an atom type named “@atom:H” in-
side the “SPCE” molecule, will be assigned to a different number than
an atom named “@atom:H” in an “Arginine” molecule. This is because
the two variables will have different full names (“@atom:SPCE/H”, and
“@atom:Arginine/H”).

Sharing atom types or other variables between molecules

If you want to share atom types between molecules, you can place them
outside the current molecule definition. Later you can use file-system-path-
like syntax (“../”, or “../../” or “/”) to access atoms (or molecules) outside
of the current molecule. For example, two different molecule types can
share the same type of hydrogen atom by referring to it using this syntax:
“@atom:../H”. (More complex nested relationships are possible. For exam-
ple see section 11.6.) (Further details of variable syntax are discussed in
appendix F.)

5.3 Troubleshooting using the output ttree directory

Users can see what numbers were assigned to each variable by inspecting the
contents of the “output ttree” subdirectory created by moltemplate. Unfor-

18



tunately, it is typical for LAMMPS to crash the first time you attempt to
run it on a DATA file created by moltemplate. This often occurs if you failed
to spell atom types and other variables consistently. The LAMMPS error
message (located at the end of the “log.lammps” file created by LAMMPS)
will help you determine what type of mistake you made. (For example, what
type of variable was misspelled or placed in the wrong place?)

To help you, the “output ttree” directory contains a file named “ttree assignments.txt”.
This is a simple 2-column text file containing a list of all of the variables
you have created in one column, and the numbers they were assigned to in
the other column. This directory also contains all of the files that you cre-
ated. The versions with a “.template” extension contain text interspersed
with full variable names (before numeric substitution). (A spelling mistake,
like using “$atom:H” when you meant to say “$atom:H1” or “@atom:H”
will show up in these files if you inspect them carefully.) This can help you
identify where the mistake occurred in your LT files.

Once a molecular system is debugged and working, users can ignore or
discard the contents of this directory.

5.4 “Data” and “In”

If you are familiar with LAMMPS, you may have noticed the file names
above (in the example from section 4.1) sound suspiciously like sections from
LAMMPS DATA files or input scripts, such as “Data Boundary”, “Data
Atoms”, “Data Bonds”, “Data Masses”, “Data Angles”, “Data Dihedrals”,
“Data Impropers”, “Data Pair Coeffs”, “Data Bond Coeffs”, “Data Angle
Coeffs”, “Data Dihedral Coeffs”, “Data Improper Coeffs”, “Data Angles By
Type”, “Data Dihedrals By Type”, “Data Impropers By Type”, “In Init”,
“In Settings”). All files whose names begin with “In ” or “Data ” are special.
For the user’s convenience, the moltemplate.sh script copies the contents of
these files into the corresponding section of the DATA file or INPUT scripts
generated by moltemplate (“system.data”, “system.in.settings”, etc). (Then
the original files are moved to the “output ttree/” directory, in an effort to
clean things up and hide them from view.) Users can create their own custom
sections to a LAMMPS data file. (See section 5.6. Note: It is unwise to add
blank lines to a data file section. Moltemplate will add the section headers
and blank lines needed to keep LAMMPS happy.)

However the “write()” and “write once()” commands are not only used
for generating sections from a DATA file or INPUT scripts. Any file can be
created. Files whose names do not begin with “In ” or “Data ” can have any
format (and are not moved or cleaned up). (See section 5.5 for an example.)

5.5 (Advanced) Using moltemplate to generate auxiliary files

The following excerpt from an LT file creates a file named “system.in.sw”.
(It contains parameters for the “sw” pair style. This exotic many-body
pair style requires a large number of parameters, which are read from a
separate file.) This “system.in.sw” file file will be read later when you run
the simulation. (The pair coeff command below tells LAMPS to read that
file.)
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write_once("system.in.sw") {

mW mW mW 6.189 2.3925 1.8 23.15 1.2 -0.33333 7.04956 0.602224 4 0 0

}

write_once("In Settings") {

pair_coeff * * sw system.in.sw mW NULL NULL NULL

}

As new force-field styles and/or fixes are added to LAMMPS, the files they
depend on can be embedded in an LT file in this way.

5.6 (Advanced) Making custom DATA sections

Suppose that in the future, the format of the LAMMPS DATA file changes
so that it now becomes necessary to supply a new section named “Foo Fee
Fum”, for example. You could do that using this command:

write_once("Data Foo Fee Fum") {

File contents goes here. (These files can contain

atom counters and/or other counter variables).

}

This way moltemplate copy this text into the “Foo Fee Fum” section at the
end of the DATA file it is constructing. This allows users to adapt to future
changes in the LAMMPS data file format.

Details/Comments

Note that it is okay for static and instance variables to share the same
variable names (such as “@atom:O” and “$atom:O”, or “@angle:HOH” and
“$angle:HOH”). These are distinct and are counted separately.

Variable and molecule names can include unicode characters and whites-
pace such as “@{atom: CA }” or “@atom:\ CA\ “.
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6 Object composition and coordinate generation

Each time a molecule is created using the “new” command, it can be rotated,
moved, and scaled. (Individual atom positions can be customized later using
the “write(”Data Atoms”)” command. Molecules are free to move during the
simulation, of course.) The initial atomic coordinates of a large compound
object is typically created by moving each individual component.

a) b)

c) d)

Figure 3: a)-b) Building a complex system from small pieces: Construction
of a polymer (b) out of smaller (2-atom) subunits (a) using composition and
rigid-body transformations. Bonds connecting different residues together
(blue) must be declared explicitly, but angle and dihedral interactions will
be generated automatically. See section 6.1 for details. c) An irregular
lattice of short polymers. (See section 9.) d) The same system after 100000
time steps using Langevin dynamics. (The VMD console commands used
for visualization were: “topo readlammpsdata system.data full”, “animate
write psf system.psf”, “pbc wrap -compound res -all”, and “pbc box”. See
online examples for details.)

6.1 Building a large molecule from smaller pieces

As an example, we define a small 2-atom molecule “2bead”, construct a
short polymer (“peptide”) using it as a building block, and create a lattice
of peptides. At each step, we define the relative orientation and position of
each unit.

Consider the following simple molecule

# -- file "2bead.lt" --
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2bead {

write_once("In Init") {

# -- Default styles for "2bead" --

units real

atom_style full

bond_style harmonic

angle_style harmonic

dihedral_style charmm

pair_style lj/cut/coul/debye 0.1 11.0

pair_modify mix arithmetic

dielectric 80.0

special_bonds lj 0.0 0.0 0.0

}

# atom-id mol-id atom-type charge x y z

write("Data Atoms") {

$atom:CA $mol:... @atom:CA 0.0 0.000 1.0000 0.0000000

$atom:R $mol:... @atom:R 0.0 0.000 4.4000 0.0000000

}

# Note: The "..." in "$mol:..." tells moltemplate that this molecule

# may be a part of a larger molecule, and to use the larger

# parent object’s molecule id number as it’s own, if present.

# atom-type mass

write_once("Data Masses") {

@atom:CA 13.0

@atom:R 50.0

}

# atom-type epsilon sigma

write_once("Data Pair Coeffs") {

@atom:CA 0.10 2.0

@atom:R 0.50 3.6

}

# bond-id bond-type atom-id1 atom-id2

write("Data Bonds") {

$bond:CR @bond:sidechain $atom:CA $atom:R

}

# bond-type k r0
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write_once("Data Bond Coeffs") {

@bond:sidechain 30.0 3.4

@bond:backbone 30.0 3.7

}

# Although there’s no need to define angular interactions (because this

# "molecule" only contains two atoms), we define the settings for angles

# or dihedrals which might be present later when we build a polymer.

# angle-type k theta0

write_once("Data Angle Coeffs") {

@angle:backbone 30.00 114

@angle:sidechain 30.00 123

}

# dihedral-type K n d w

write_once("Data Dihedral Coeffs") {

@dihedral:back -0.5 1 -180 0.0

@dihedral:side -1.5 1 -180 0.0

}

# Rules for determining 3 and 4-body bonded interactions by type

# angle-type atomType1 atomType2 atomType3 bondType1 bondType2

write_once("Data Angles By Type") {

@angle:backbone @atom:CA @atom:CA @atom:CA @bond:* @bond:*

@angle:sidechain @atom:CA @atom:CA @atom:R @bond:* @bond:*

}

# dihedral-type AtomType1 AtomType2 AtomType3 AtomType4 bondType1 btyp2 btyp3

write_once("Data Dihedrals By Type") {

@dihedral:back @atom:CA @atom:CA @atom:CA @atom:CA @bond:* @bond:* @bond:*

@dihedral:side @atom:R @atom:CA @atom:CA @atom:R @bond:* @bond:* @bond:*

}

} # 2bead

6.1.1 Building a simple polymer

We construct a short polymer by making 7 copies of “2bead”, rotating and
moving each copy:

# -- file "peptide.lt" --
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import "2bead.lt"

Peptide {

res1 = new 2bead

res2 = new 2bead.rot(180.0, 1,0,0).move(3.2,0,0)

res3 = new 2bead.rot(360.0, 1,0,0).move(6.4,0,0)

res4 = new 2bead.rot(540.0, 1,0,0).move(9.6,0,0)

res5 = new 2bead.rot(720.0, 1,0,0).move(12.8,0,0)

res6 = new 2bead.rot(900.0, 1,0,0).move(16.0,0,0)

res7 = new 2bead.rot(1080.0, 1,0,0).move(19.2,0,0)

# Now, link the residues together this way:

write("Data Bonds") {

$bond:backbone1 @bond:2bead/backbone $atom:res1/CA $atom:res2/CA

$bond:backbone2 @bond:2bead/backbone $atom:res2/CA $atom:res3/CA

$bond:backbone3 @bond:2bead/backbone $atom:res3/CA $atom:res4/CA

$bond:backbone4 @bond:2bead/backbone $atom:res4/CA $atom:res5/CA

$bond:backbone5 @bond:2bead/backbone $atom:res5/CA $atom:res6/CA

$bond:backbone6 @bond:2bead/backbone $atom:res6/CA $atom:res7/CA

}

create_var { $mol:. } #<-creates a molecule ID number for this (".") object

# This causes atoms in res1,res2,res3,...,res7 to share the same molecule ID

# because in the 2bead.lt file, the "..." in "$mol:..." preferentially looks

# for a counter of that type appearing in a "write()" statement (or a

# "create_var" statement) in a parent molecule or earlier ancestor.

}

The position and orientation of each copy of “2bead” is specified after the
“new” statement. Each “new” statement is typically followed by a chain of
move/rotate/scale functions separated by dots, evaluated left-to-right (op-
tionally followed by square brackets and then more dots). For example,
“res2” is a copy of “2bead” which is first rotated 180 degrees around the
X axis (denoted by “1,0,0”), and then moved in the (3.2,0,0) direction.
(The last three arguments to the “rot()” command denote the axis of rota-
tion, which does not have to be normalized.) (A list of available coordinate
transformations is provided in section 3.3.)

(Note: Although we did not do this here, it is sometimes convenient
to represent polymers as 1-dimensional arrays. See sections 7 and 7.4 for
examples.)

To bond atoms in different molecules or molecular subunits together, we
used the write(“Data Bonds”) command to append additional bonds to the
system. (Because we are outside the definition of these molecules, we must
be careful to refer to the atom-IDs and bond-types by their full-names.
Here I’m using the “@bond:backbone” settings which were defined in the
“2bead” molecule, so I refer to the bond type as “@bond:2bead/backbone”.
See section 5.2.3.)
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6.1.2 Sharing atom, bond and angle types

Normally you must separately define the parameters for all of the atoms
types, and bond types, angle types etc... in every type of molecule. However
different kinds of monomers in a heteropolymer typically will share some
common backbone atom types and other properties. You must be careful to
indicate which atom and bond types are shared between different monomers
by referring them using a “../” prefix. (See sections 5.2.5, 11.6, and 11.5
for details and examples.) Note: There is a heteropolymer example in the
the “2bead heteropolymer/” directory in the online examples. This example
demonstrates how to share backbone atoms, bonds, and angles. You can also
define specific angle or dihedral interactions which are specific to the atom
types in different residues.

6.2 Bonded interactions by type

In this example we did not provide a list of all 3-body and 4-body forces be-
tween bonded atoms in the polymer. (for example using the “write once(”Data
Angles”)” command from section 4.1, or the “write once(”Data Dihedrals”)”,
or “write once(”Data Impropers”)” commands.) Instead we provided moltem-
plate.sh with instructions to help it figure out which atoms participate in 3-
body and 4-body bonded interactions. Moltemplate can detect consecutively
bonded atoms and determine the forces between them based on atom type.
(Bond type can also be used as a criteria.) We did this in “2bead.lt” using
the “write once(”Angles By Type”)” and “write once(”Dihedrals By Type”)”
commands. You can also generate improper interactions between any 4-
atoms bonded together in a T-shaped topology using the “write once(”Impropers
By Type”)” command. See appendix A for more details. (More general in-
teractions are possible. See appendix E.2.)

7 Arrays and coordinate transformations

Moltemplate supports 1-dimensional, and multi-dimensional arrays. These
can be used to create straight (or helical) polymers sheets, tubes, torii. They
are also to fill solid 3-dimensional volumes with molecules or atoms. (See
sections 4.2 and 9.)

Here we show an easier way to create the short polymer shown in section
6.1.1. You can make 7 copies of the 2bead molecule this way:

res = new 2bead [7]

This creates 7 new 2bead molecules (named res[0] , res[1] , res[2] , res[3] ,
... res[6]). Unfortunately, by default, the coordinates of each molecule
are identical. To prevent the atom coordinates from overlapping, you have
several choices:

7.1 Transformations following brackets [] in a new statement

After every square-bracket [] in a new command, you can specify a list of
transformations to apply. For example, we could have generated atomic
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coordinates for the the short polymer in section 6.1.1 using this command:

res = new 2bead [7].rot(180, 1,0,0).move(3.2,0,0)

This will create 7 molecules. The coordinates of the first molecule res[0] are
will be unmodified. However each successive molecule will have its coordi-
nates cumulatively modified by the commands “rot(180, 1,0,0)” followed by
“move(3.2,0,0)”.

optional: initial customizations (preceding [] brackets)

You can also make adjustments to the initial coordinates of the molecule
before it is copied, and before any of the array transformations are applied.
For example:

res = new 2bead.scale(1.5) [7].rot(180, 1,0,0).move(3.2,0,0)

In this example, the “scale(1.5)” transformation is applied once to enlarge
every 2bead monomer initially. This will happen before any of the rotation
and move commands are applied to build the polymer (so the 3.2 Angstrom
spacings between each monomer will not be effected).

7.2 Transformations following instantiation

Alternately you apply transformations to a molecule after they have been
created (even if they are part of an array).

res = new 2bead [7]

# Again, the first line creates the molecules named

# "res[0]", "res[1]", "res[2]", "res[3]", ... "res[6]".

# The following lines move them into position.

res[1].rot(180.0, 1,0,0).move(3.2,0,0)

res[2].rot(360.0, 1,0,0).move(6.4,0,0)

res[3].rot(540.0, 1,0,0).move(9.6,0,0)

res[4].rot(720.0, 1,0,0).move(12.8,0,0)

res[5].rot(900.0, 1,0,0).move(16.0,0,0)

res[6].rot(1080.0, 1,0,0).move(19.2,0,0)

7.3 Transformation order (general case)

A typical array of molecules might be instantiated this way:

mols = new Molecule.XFORMS1() [N].XFORMS2()

mols[*].XFORMS3()

The list of transformations denoted by “XFORMS1” in this example are
applied to the molecule first. Then the transformations in “XFORMS2” are
then applied to each copy of the molecule multiple times. (For the molecule
with index “i”, named “Molecule[i]”, XFORMS2 will be applied i times.)
Finally after all the molecules have been created, the list of transformations
in XFORMS3 will be applied. For example, to create a ring of 10 peptides
of radius 30.0, centered at position (0,25,0), use this notation:
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peptide_ring = new Peptide.move(0,30,0) [10].rot(36,1,0,0)

# After creating it, we can move the entire ring

# (These commands are applied last.)

peptide_ring[*].move(0,25,0)

7.4 Random arrays

a) b) c)

Figure 4: A random heteropolymer (c), composed of of 2bead and 3bead
monomers (a and b) in a 3:2 ratio.

Arrays of random molecules can be generated using the new random() []
syntax. For example, below we define a random polymer composed of 50
2bead and 3bead monomers. (See figure 4.)

RandPoly50 {

# Make a chain of randomly chosen monomers:

monomers = new random([2bead, 3bead], [0.6, 0.4], 123456)

[50].rot(180,1,0,0).move(2.95, 0, 0)

# Now, link the monomers together this way:

write("Data Bonds") {

$bond:bb1 @bond:backbone $atom:monomers[0]/CA $atom:monomers[1]/CA

$bond:bb2 @bond:backbone $atom:monomers[1]/CA $atom:monomers[2]/CA

$bond:bb3 @bond:backbone $atom:monomers[2]/CA $atom:monomers[3]/CA

$bond:bb4 @bond:backbone $atom:monomers[3]/CA $atom:monomers[4]/CA

...

$bond:bb50 @bond:backbone $atom:monomers[48]/CA $atom:monomers[49]/CA

}

#(Note: Both the "2bead" and "3bead" molecules contain atoms

# named "$atom:CA". The atom types are different, however.)

} #RandPoly50

It is also possible to fill a 2 or 3-dimensional volume with molecules randomly.
This is discussed in section 9.2.

The new random() function takes 2 or 3 arguments: a list of molecule
types (2bead and 3bead in this example), and a list of probabilities (0.6 and
0.4 ) both enclosed in square-brackets []. There is no limit to the number
of molecule types which appear in these lists. (These lists can also contain
vacancies/blanks. See section 9.3.) (An optional random-seed argument
can also be included. For example the “123456” shown above. If you omit
this number, then you will get different results each time you run moltem-
plate.) Note that once a molecule containing random monomers is defined,
(“RandPoly50” in this example), each copy of that molecule (created using
the new command) is identical.
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optional: initial customizations (within random())

As before, you may apply an initial transformation to each monomer type
immediately after its name. For example to move the two monomer types
closer or further away from the polymer axis, you can use:

monomers = new random([2bead.move(0,0.01,0),

3bead.move(0,-0.01,0)],

...

These move(0,0.01,0) and move(0,-0.01,0) commands will be applied be-
fore the other rotate and move commands are applied which generate the
polymer.

7.5 [*] and [i-j] notation

You can move the entire array of molecules using “[*]” notation:

res[*].move(0,0,40)

(Note that “res.move(0,0,40)” does not work. You must include the “[*]”.)
You can also use range limits to move only some of the residues:

res[2-4].move(0,0,40)

This will move only the third, fourth, and fifth residues.
Of course, as mentioned earlier, you can also always load atom coor-

dinates from an external PDB or XYZ file. Such files can be generated
by PACKMOL, or a variety of advanced graphical molecular modeling pro-
grams. For complex systems, this may be the best choice.

8 Customizing molecule position and topology

By default, each copy of a molecule created using the new command is
identical. This need not be the case.

As discussed in section 7.2, individual molecules which were recently cre-
ated can be moved, rotated, and scaled. You can also overwrite or delete
individual atoms, bonds, and other interactions within a molecule, or their
subunits. (See sections 8.3.2, 8.1, and 8.2.) You make any of these modifica-
tions to some copies of the molecule without effecting other copies. Further-
more, if those molecules are compound objects (if they contain individual
molecular subunits within them), then you can rearrange the positions of
their subunits as well. And all of this can be done from anywhere else in
the LT file.

For example, suppose we used the “Peptide” molecule we defined above
to create a larger, more complex “Dimer” molecule.

Dimer {

peptides = new Peptide [2].rot(180,1,0,0).move(0, 12.4, 0)

}

dimer = new Dimer
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The Dimer molecule is shown in figure 7a). (Note: The rot() and move()
commands are only applied to the the second peptide, as explained in section
7.1.) We can customize the position of the 3rd residue of the second peptide
this way:

dimer/peptide[1]/res[2].move(0,0.2,0.6)

This does not effect the position of res[2] in peptide[0] (or in any other
“Peptide” molecule). If you want to move them both, you could use a
wildcard character “*”

dimer/peptide[*]/res[2].move(0,0.2,0.6)

(You an also use ranged notation, such as “peptide[0-1]”, as an alternative
to “peptide[*]”. See section 7.5. You could also modify the definition of the
“Peptide” molecule. See section 10.)

8.1 Customizing individual atom locations

To customize the positions of individual atoms, don’t use the “move” or
“rot” commands. Instead simply overwrite their coordinates this way:

write("Data Atoms") {

$atom:dimer/peptide[0]/res[2]/CA $mol:dimer/peptide[1] @atom:2bead/R 0 6.4 8.2 0.6

}

Note that because you are outside the definition of the 2bead molecule,
you must be careful to refer to the atom-ID, molecule-ID, and atom-Type
variables using their full names, as shown above. (Don’t use the abbreviated
names you normally use. See section 5.2.3.)

8.2 Adding bonds and angles to individual molecules

Adding additional bonds within a molecule can be accomplished by writing
additional lines of text to the “Data Bonds” section. (This is what we
did when we added bonds between residues to create a polymer in section
6.1.1.) Again, bonds and atom names must be referred to by their full
names. Bonds and bonded interactions can be deleted using the “delete”
command. (See section 8.3.)

8.3 The delete command

8.3.1 Deleting molecules or molecular subunits

Molecules can be further customized by deleting individual atoms, bonds,
bonded-interactions, and entire subunits. We can delete the 3rd residue of
the second peptide, use the “delete” command:

delete dimer/peptide[1]/res[2]
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8.3.2 Deleting atoms, bonds, angles, dihedrals, and impropers

Individual atoms or bonds can be deleted in a similar way:

delete dimer/peptide[1]/res[3]/CA #<-- deletes the "CA" atom

delete dimer/peptide[1]/res[4]/sidechain #<-- deletes the "sidechain" bond

Whenever an atom or a molecule is deleted, the bonds, angles, dihedrals,
and improper interactions involving those atoms are deleted as well. (In
fact, any lines of text in any “write()” statement containing references to
deleted atoms are omitted.)

When a bond is deleted, any angular, dihedral, or improper interactions
are automatically generated by moltemplate are removed as well. (However
other bonded interactions explicitly listed by the user in their “Data Angles”,
“Data Dihedrals”, or “Data Impropers” sections are not removed. These
need to be deleted manually.)

Multiple molecules can moved or deleted in a single command. For
example, the following command deletes the third, fourth, fifth residues
from both peptide[0] and peptide[1]:

delete dimer/peptide[*]/res[2-4]

See section 7.5 for an explanation of ranged (“[2-4]”) array notation, and
wildcard characters (“*”).

9 Multidimensional arrays

The same techniques work with multidimensional arrays. Coordinate trans-
formations can be applied to each layer in a multi-dimensional array. For
example, to create a cubic lattice of 3x3x3 peptides: you would use this
syntax:

peptides = new Peptide [3].move(0, 0, 30.0)

[3].move(0, 30.0, 0)

[3].move(30.0, 0, 0)

(Similar commands can be used with rotations to generate objects with
cylindrical, helical, conical, or toroidal symmetry.)

9.1 Customizing individual rows, columns, or layers

Similarly, you can customize the position of individual peptides, or layers or
columns using the methods above:

peptides[1][*][*].move(20,0,0)

peptides[*][1][*].move(0,0,20)

peptides[*][*][1].move(0,20,0)

(See figure 3c))
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9.2 Creating random mixtures using multidimensional ar-
rays

You can use “new random()” to fill space with a random mixture of molecules.
The following 2-dimensional example creates a lipid bilayer (shown in figure
5) composed of an equal mixture of DPPC and DLPC lipids. (...Whose
definition we omit here. See the online examples for details.)

import "lipids" # define DPPC & DLPC

lipids = new random([DPPC,DLPC], [0.5,0.5], 123) # "123"=random_seed

[19].move(7.5, 0, 0) # lattice spacing 7.5

[22].move(3.75, 6.49519, 0) # hexagonal lattice

[2].rot(180, 1, 0, 0) # 2 monolayers

a) b)

Figure 5: A lipid bilayer membrane composed of a random equal mixture
of two different lipid types in a 1:1 ratio. (See section 9.2.) In b) one of the
molecule types was left blank leaving vacancies behind. (See section 9.3.)

9.3 Inserting random vacancies

The list of molecule types passed to the random() function may contain
blanks. In the next example, 30% of the lipids are missing:

lipids = new random([DPPC, ,DLPC], [0.35,0.3,0.35], 123) # 2nd element is blank

[19].move(7.5, 0, 0)

[22].move(3.75, 6.49519, 0)

[2].rot(180, 1, 0, 0)

The results are shown in figure 5b). (Note: When this happens, the ar-
ray will contain missing elements. Any attempt to access the atoms inside
these missing molecules will generate an error message, however moving or
deleting array elements is always safe.)

9.4 Cutting rectangular holes using delete

The delete command can be used to cut large holes in 1, 2, and 3-dimensional
objects. For example, consider a simple 3-dimensional array of molecules:

molecules = new OneAtomMolecule [12].move(3.0,0,0)

[12].move(0,3.0,0)

[12].move(0,0,3.0)
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delete molecules[*][*][2]

delete molecules[*][*][8]

delete molecules[6-7][0-8][5-6]

The result of these operations is shown in figure 6. (Note: You may move
or delete previously deleted array elements more than once, and/or deleting
overlapping rectangular regions without error.)

Figure 6: Rectangular holes can be carved out of an array of molecules (rep-
resented here by blue spheres) using the “delete” command. Three delete
commands were used to remove the two planar regions and the rectangular
hole in the center.

10 Customizing molecule types

You can create modified versions of existing molecule types, without having
to redefine the entire molecule. For example:

Dimer0 = Dimer.move(-9.6,-6.2, 0).scale(0.3125)

or equivalently:

Dimer0 = Dimer

Dimer0.move(-9.6,-6.2, 0).scale(0.3125)

This creates a new type of molecule named “Dimer0” whose coordinates
have been centered and rescaled. (Note that the “scale()” command only
effects the atomic coordinates. (You will have to override earlier force field
settings, such as atomic radii and bond-lengths in order for this to work
properly.) If we want to make additional customizations (such as adding
atoms, bonds, or molecular subunits), we could use this syntax:

Dimer0 = Dimer

# Add some new atoms connecting the two peptides in the dimer

Dimer0 {

write("Data Atoms") {

$atom:t1 $mol:. @atom:2bead/CA 0.0 23.0 0.0 0.0

$atom:t2 $mol:. @atom:2bead/CA 0.0 24.7 4.0 0.0

$atom:t3 $mol:. @atom:2bead/CA 0.0 24.7 8.4 0.0
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$atom:t4 $mol:. @atom:2bead/CA 0.0 23.0 12.4 0.0

}

write("Data Bonds") {

$bond:b1 @bond:2bead/backbone $atom:peptides[0]/res7/CA $atom:t1

$bond:b2 @bond:2bead/backbone $atom:t1 $atom:t2

$bond:b3 @bond:2bead/backbone $atom:t2 $atom:t3

$bond:b4 @bond:2bead/backbone $atom:t3 $atom:t4

$bond:b5 @bond:2bead/backbone $atom:t4 $atom:peptides[1]/res7/CA

}

}

# Center and rescale the atoms in all "Dimer0"

Dimer0.move(-9.6,-6.2, 0).scale(0.3125)

The result of these modifications is shown in figure 7b).

a) b)

Figure 7: a) The “Dimer” molecule. This is a contrived example consist-
ing of two “Peptides”. See section 6.1.1 b) A customized version of the
“Dimer” molecule. (The original “Dimer” is shown faded in the background
for comparison.)

Note1: Coordinate transformations applied to entire molecule types are
an experimental feature as of 2012-9-28. This feature has not been rigorously
tested.

Note2: These coordinate transformations will be applied after the molecule
is constructed. Consequently, to make things clear, I recommend placing the
coordinate transforms applied to an entire molecule type after all of its in-
ternal details (bonds, atoms, subunits) have been declared, as we did here.

Note3: You may also want all of the atoms in “Dimer0” to share the
same molecule-ID counter (“$mol”), so that LAMMPS realizes they belong
to the same molecule. To do that you should delete the “create var $mol:.”
line from the definition of the Peptide molecule, and add it to Dimer0.

(Advanced) Inheritance

The Dimer0 molecule is a type of Dimer molecule. For those who are famil-
iar with programming, relationships like this are analogous to the relation-
ship between parent and child objects in an object-oriented programming
language. More general kinds of inheritance are supported by moltemplate
and are discussed in section 11.8.
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(Advanced) Multiple Inheritance

If we wanted, we could have created a new molecule type (like “Dimer0”)
which includes atom types and features from multiple different types of
molecules. Section 11.8 mentions one way to do this and section 11.8.3
discusses alternate approaches.

Advanced moltemplate usage

11 Portability: Using LT files for force-field stor-
age

The “.LT” format is a flexible file format for storing force field parameters
in LAMMPS. If you want to share your “.LT” file with others, it’s not safe
to assume that all interactions use the same standard formula.

11.1 Mixing molecule types

LAMMPS has the ability to combine molecules using multiple different
force-field styles together using. In section 4.1, we provided an example
of an SPCE water molecule model. This example was simple to understand.
However, as written, it would be impossible to combine this definition of
water with other molecules which don’t share the same simple bond or an-
gle styles. For example, we used harmonic restoring forces to preserve the
water angle at $109.47, but other users may want to mix this SPCE water
with a small number of molecules which use a more complicated angular
potential formula, or tabular angle potentials. Using the “hybrid” keyword,
you can avoid this limitation. A more robust example is included below.

# file "spce.lt"

#

# H1 H2

# \ /

# O

SPCE {

write_once("In Init") {

# -- Default styles (for solo "SPCE" water) --

units real

atom_style full

pair_style hybrid lj/charmm/coul/long 9.0 10.0 10.0

bond_style hybrid harmonic

angle_style hybrid harmonic

kspace_style pppm 0.0001

pair_modify mix arithmetic

}

34



# AtomID MolID("."=this) AtomType charge coordX coordY coordZ

write("Data Atoms") {

$atom:O $mol:. @atom:O -0.8476 0.0000000 0.00000 0.000000

$atom:H1 $mol:. @atom:H 0.4238 0.8164904 0.00000 0.5773590

$atom:H2 $mol:. @atom:H 0.4238 -0.8164904 0.00000 0.5773590

}

# atom-type Mass

write_once("Data Masses") {

@atom:O 15.9994

@atom:H 1.008

}

# -- Forces between atoms (non-bonded) --

# atomTypeI atomTypeJ pair-style-name parameter-list

write("In Settings") {

pair_coeff @atom:O @atom:O lj/charmm/coul/long 0.1553 3.166

pair_coeff @atom:H @atom:H lj/charmm/coul/long 0.0 2.058

}

# -- Forces between atoms (bonded) --

# bond-id bond-type atom-id1 atom-id2

write("Data Bonds") {

$bond:OH1 @bond:OH $atom:O $atom:H1

$bond:OH2 @bond:OH $atom:O $atom:H2

}

# bond-type bond-style-name parameter-list

write("In Settings") {

bond_coeff @bond:OH harmonic 200.0 1.0

}

# angle-id angle-type atom-id1 atom-id2 atom-id3

write("Data Angles") {

$angle:HOH @angle:HOH $atom:H1 $atom:O $atom:H2

}

# angle-type angle-style-name parameter-list

write("In Settings) {

angle_coeff @angle:HOH harmonic 200.0 109.47

}

# miscellaneous

write_once("In Settings") {

group spce type @atom:O @atom:H

fix fSHAKE spce shake 0.0001 10 100 b @bond:OH a @angle:HOH

35



# (Remember to "unfix" fSHAKE during minimization.)

}

} # SPCE

There are two differences between this molecule definition and the “spce simple.lt”
example from section 4.1:

Hybrid force field styles

To experienced LAMMPS users, it may seem strange that in this example
that we have chosen “hybrid” styles followed by only one force-field style
(“harmonic”). However this will make your molecule easier to share with
others. When other people use your LT file, they can override these styles
as explained in section 11.2.

Force-field parameters are specified in “In Settings” instead of the
“Data” file

We replaced the “write once(”Data Pair Coeffs”)”, “write once(”Data Bond
Coeffs”)”, and “write once(”Data Angle Coeffs”)” (which use lammps DATA
file syntax) with “pair coeff”, “bond coeff” and “angle coeff” commands
(which use lammps INPUT SCRIPT file syntax). (Of course, more compli-
cated molecules would require dihedral and improper styles as well.) Again,
moltemplate.sh copies all text located in a “write once(”In Settings”)” state-
ment into the LAMMPS input script. The various “coeff” commands above
are LAMMPS input script commands, and therefore they must appear inside
a “write once(”In Settings”)” statement.

11.2 Combining molecules with different force field styles

Later on, if a user wants to combine the SPCE water molecule with another
molecule which uses a tabular pair style (for example), they would have to
specify the complete hybrid pair style in the “Init” section of their LT file.
For example:

import "spce.lt"

import "other_molecule.lt"

write_once("In Init") {

pair_style hybrid lj/charmm/coul/long 9 10 10 table spline 1000

}

Note: By placing the “write once(”In Init”){ }” statement after “import
”spce.lt””, this insures that the pair style commands issued here will over-
ride the pair style commands issued earlier “spce.lt”. This allows moltem-
plate users users to combine their molecules “spce.lt” file shown here with
other template files without modification (assuming the atom styles match).
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11.3 Nesting

Molecule names such as “Solvent” (or even “Water”) are short and easy
to type, but are vague and are not portable. If you use common, generic
molecule names, you will not be able to combine your molecule templates
with templates written by others (without carefully checking for naming
conflicts). LT files were meant to be used for storing and exchanging libraries
of different molecule types.

Suppose, for example, that you want to run a simulation consisting of
different molecule types, each of which belong to different LT files. Sup-
pose two of the LT files both happen to contain definitions for “Water”.
Moltemplate does not detect these name clashes automatically and instead
attempts to merge the two versions of “Water” together, (most likely creat-
ing a molecule with 6 atoms instead of 3). This is presumably not what you
want.

As the number of molecule types grows, the possibility of naming clashes
increases. As the behavior of the same molecule can be approximated using
many different force fields, one has to be careful to avoid clashing molecule
names.

To alleviate the problem, you can “nest” your molecules inside the def-
inition of other molecules or objects. This reduces the scope in which your
molecule is defined. See section 11.5 for an example.

11.4 A simple force-field example

Force-field parameters can be shared by groups of related molecules. In the
example below, we create an object named “TraPPE”. Later we use it to
define a new molecule named “Cyclopentane”.

The following example defines a coarse-grained (united-atom) version of
a “cyclopentane” molecule. (Hydrogen atoms have been omitted.) In this
example, only the atom types (and positions) and the bonds connecting
them need to be specified. The interactions between them are determined
automatically by the settings in the force-field file “trappe1998.lt”.

import "trappe1998.lt"

cyclopentane {

# AtomID MolID(’.’=this) AtomType charge coordX coordY coordZ

write("Data Atoms") {

$atom:C1 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.000000000 1.0000000

$atom:C2 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.951056516 0.3090170

$atom:C3 $mol:. @atom:TraPPE/CH2 0.0 0.0000 0.587785252 -0.809017

$atom:C4 $mol:. @atom:TraPPE/CH2 0.0 0.0000 -0.587785252 -0.809017

$atom:C5 $mol:. @atom:TraPPE/CH2 0.0 0.0000 -0.951056516 0.3090170

}

write("Data Bonds") {

$bond:bond1 @bond:TraPPE/CC $atom:C1 $atom:C2
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$bond:bond2 @bond:TraPPE/CC $atom:C2 $atom:C3

$bond:bond3 @bond:TraPPE/CC $atom:C3 $atom:C4

$bond:bond4 @bond:TraPPE/CC $atom:C4 $atom:C5

$bond:bond5 @bond:TraPPE/CC $atom:C5 $atom:C1

}

}

(The “TraPPE/” is explained below.) We can create copies of this molecule
in the same way we did with SPCE:

# A cubic lattice of 125 cyclopentane molecules (12-angstrom spacing)

mols = new Cyclopentane [5].move(0,0,12) [5].move(0,12,0) [5].move(12,0,0)

Unlike the SPCE example, we don’t have to specify all of the interactions
between these atoms because the atom and bond types (CH2, CC). match
the type-names defined in the “trappe1998.lt” file. This file contains a collec-
tion of atom types and force-field parameters for coarse-grained hydrocarbon
chains. (See [5] for details.) This way, the “CH2” atoms in cyclopentane
will interact with, and behave identically to any “CH2” atom from any other
molecule which uses the TraPPE force field. (The same is true for other
atom types, and interaction-types which are specific to “TraPPE”, such
as “@atom:TraPPE/CH3”, “@bond:TraPPE/CC”, etc... Another molecule
which uses the TraPPE force field is discussed later in section 11.5.) The
important parts of the “trappe1998.lt” file are shown below:

11.4.1 Namespace example

# -- file "trappe1998.lt" --

TraPPE {

write_once("Data Masses") {

@atom:CH2 14.1707

@atom:CH3 15.2507

}

write_once("In Settings") {

bond_coeff @bond:CC harmonic 120.0 1.54

angle_coeff @angle:CCC harmonic 62.0022 114

dihedral_coeff @dihedral:CCCC opls 1.411036 -0.271016 3.145034 0.0

pair_coeff @atom:CH2 @atom:CH2 lj/charmm/coul/charmm 0.091411522 3.95

pair_coeff @atom:CH3 @atom:CH3 lj/charmm/coul/charmm 0.194746286 3.75

# (Interactions between different atom types use mixing rules.)

# (Hybrid styles were used for portability.)

}

write_once("Data Angles By Type") {

@angle:CCC @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC

}

write_once("Data Dihedrals By Type") {

@dihedral:CCCC @atom:C* @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC @bond:CC

}

}
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In addition to the atom-type names and masses, this file stores the force-field
parameters (coeffs) for the interactions between them.

Bonded interactions by type

Again, the “Angles By Type” and “Dihedrals By Type” sections tell moltem-
plate.sh that bonded 3-body and 4-body interactions exist between any 3 or
4 consecutively bonded carbon atoms (of type CH2, CH3, or CH4) assum-
ing they are bonded using “CC” (saturated) bonds. The “*” character is a
wild-card. “C*” matches “CH2”, “CH3”, and “CH4”. (Bond-types can be
omitted or replaced with wild-cards “@bond:*”.)

Namespaces and nesting:

Names like “CH2” and “CC” are extremely common. To avoid confus-
ing them with similarly named atoms and bonds in other molecules, we
enclose them (“nest” them) within a namespace (“TraPPE”, in this exam-
ple). Unlike “SPCE” and “Cyclopentane”, “TraPPE” is not a molecule.
It is just a container of atom types, bond-types and force-field parameters
shared by other molecules. We do this to distinguish them from other atoms
and bonds which have the same name, but mean something else. Else-
where we can refer to these atom/bond types as “@atom:TraPPE/CH2”
and “@bond:TraPPE/CC”. (You can also avoid repeating the cumbersome
“TraPPE/” prefix for molecules defined within the TraPPE namespace. For
example, see section 11.5.)

11.5 Nested molecules

Earlier in section 11.4.1, we created an object named “TraPPE” and used it
to create a molecule named “Cyclopentane”. Here we use it to demonstrate
nesting. Suppose we define a new molecule “Butane” consisting of 4 coarse-
grained (united-atom) carbon-like beads, whose types are named “CH2” and
“CH3”.

# -- file "trappe_butane.lt" --

import "trappe1998.lt"

Butane {

write("Data Atoms"){

$atom:C1 $mol:. @atom:TraPPE/CH3 0.0 0.419372 0.000 -1.937329

$atom:C2 $mol:. @atom:TraPPE/CH2 0.0 -0.419372 0.000 -0.645776

$atom:C3 $mol:. @atom:TraPPE/CH2 0.0 0.419372 0.000 0.645776

$atom:C4 $mol:. @atom:TraPPE/CH3 0.0 -0.419372 0.0000 1.937329

}

write("Data Bonds"){

$bond:b1 @bond:TraPPE/CC $atom:C1 $atom:C2

$bond:b2 @bond:TraPPE/CC $atom:C2 $atom:C3

$bond:b3 @bond:TraPPE/CC $atom:C3 $atom:C4
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}

}

Alternately, as mentioned above, it may be simpler to nest our “Bu-
tane” within “TraPPE”, so that so that it does not get confused with other
(perhaps all-atom) representations of butane. In that case, we would use:

# -- file "trappe_butane.lt" --

import "trappe1998.lt"

TraPPE {

Butane {

write("Data Atoms"){

$atom:C1 $mol:. @atom:../CH3 0.0 0.419372 0.000 -1.937329

$atom:C2 $mol:. @atom:../CH2 0.0 -0.419372 0.000 -0.645776

$atom:C3 $mol:. @atom:../CH2 0.0 0.419372 0.000 0.645776

$atom:C4 $mol:. @atom:../CH3 0.0 -0.419372 0.0000 1.937329

}

write("Data Bonds"){

$bond:b1 @bond:../CC $atom:C1 $atom:C2

$bond:b2 @bond:../CC $atom:C2 $atom:C3

$bond:b3 @bond:../CC $atom:C3 $atom:C4

}

}

}

Note: Wrapping Butane within “TraPPE{ }” clause merely appends addi-
tional content to be added to the “TraPPE” object defined in the “trappe1998.lt”
file (which was included earlier). It does not overwrite it. Again “../” tells
moltemplate use the “CH2” atom defined in the context of the TraPPE en-
vironment (IE. one level up). This insures that moltemplate does not create
a new “CH2” atom type which is local to the Butane molecule. (Again, by
default all atom types and other variables are local. See section 5.2.5.)

To use this butane molecule in a simulation, you would import the file
containing the butane definition, and use a “new” command to create one
or more butane molecules.

import "trappe_butane.lt"

new butane = TraPPE/Butane

(You don’t need to import “trappe1998.lt” in this example because it was
imported within “trappe butane.lt”.) The “TraPPE/” prefix before “Bu-
tane” lets moltemplate/ttree know that butane was defined locally within
TraPPE.

Note: An alternative procedure using inheritance exists which may be
a cleaner way to handle these kinds of relationships. See sections 11.8 and
11.8.1.
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11.6 Path syntax: “../”, “.../”, and “$mol:.”

Generally, multiple slashes (“/”) as well as (“../”) can be used build a path
that indicates the (relative) location of any other molecule in the object
hierarchy. (The “.”, “/” and “..” symbols are used here in the same way
they are used to specify a path in a unix-like file-system. For example, the
“.” in “$mol:.” refers to the current molecule (instance), in the same way
that “./” refers to the current directory. (Note: “$mol” is shorthand for
“$mol:.”)

A slash by itself, “/”, refers to the global environment. This is the
outermost environment in which all molecules are defined/created.

(Advanced) Ellipsis notation “.../”

If you are using multiple levels of nesting, and if you don’t know (or if
you don’t want to specify) where a particular molecule type or atom type
(such as “CH2”) was defined, you can refer to it using “.../CH2” instead of
“../CH2”. The “...” ellipsis syntax searches up the tree of nested molecules
to find the target (the text following the “/” slash).

(Advanced) $mol:... notation

Molecules can contain multiple layers of hierarchy, however all the atoms
share the same molecule ID. To refer to the ID of the molecule to which
you belong, use “$mol:...”. (If none of the molecules which instantiate the
current molecule define a variable in the $mol category, then a new local
$mol variable will be created automatically.

The “...” syntax is explained more formally in appendix F.)

11.7 using namespace syntax

Because the Butane molecule was defined within the TraPPE environment,
you normally have to indicate this when you refer to it later. For example,
to create a copy of a Butane molecule, you would normally use:

import "trappe_butane.lt"

butane = new TraPPE/Butane

However for convenience, you can use the “using namespace” decla-
ration so that, in the future, you can quickly refer to any of the molecule
types defined within TraPPE directly, without having to specify their path.

import "trappe_butane.lt"

using namespace TraPPE

butane = new Butane
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This only works for molecule types, not atom types

Unfortunately, you still must always refer to atom types, bond types, and
any other primitive types explicitly (by their full path). For example,
the second line in the “Data Atoms” in the example below does not refer
to the CH2 atom type defined in TraPPE. (Instead it creates a new atom
type, which is probably not what you want.)

import "trappe_butane.lt"

using namespace TraPPE

butane = new Butane

write("Data Atoms") {

$atom:C1 $mol @atom:TraPPE/CH2 0.0 0.41937 0.00 1.9373 # <-- yes

$atom:C2 $mol @atom:CH2 0.0 -0.41937 0.00 -0.6457 # <-- no, bad idea

}

If, for example, you want to leave out the “TraPPE/” prefix when accessing
the atom, bond, and angle types defined in TraPPE, then instead you can
define a new molecule which inherits from TraPPE. (See section 11.8.)

11.8 Inheritance

We could have defined Butane this way:

import "trappe1998.lt"

Butane inherits TraPPE {

write("Data Atoms"){

$atom:C1 $mol:. @atom:CH3 0.0 0.419372 0.000 -1.937329

$atom:C2 $mol:. @atom:CH2 0.0 -0.419372 0.000 -0.645776

$atom:C3 $mol:. @atom:CH2 0.0 0.419372 0.000 0.645776

$atom:C4 $mol:. @atom:CH3 0.0 -0.419372 0.0000 1.937329

}

write("Data Bonds"){

$bond:b1 @bond:CC $atom:C1 $atom:C2

$bond:b2 @bond:CC $atom:C2 $atom:C3

$bond:b3 @bond:CC $atom:C3 $atom:C4

}

}

A molecule which inherits from another molecule (or namespace) is a partic-
ular type of that molecule (or namespace). Defining Butane this way allows
it to access all of molecule types, atom types, and bond types, etc... defined
within TraPPE as if they were defined locally. (I did not have to refer to
the CH3 atom types as “@atom:TraPPE/CH3”, for example.)

11.8.1 Multiple inheritance:

A molecule can inherit from multiple parents. This is one way you can allow
the Butane molecule to borrow atom, bond, angle, dihedral, and improper
types from multiple different force-field parents:
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import "trappe1998.lt"

import "dreiding1990.lt"

Butane inherits TraPPE Dreiding {

...

}

Details:Moltemplate attempts to resolve duplicate atom types or molecule
types if they are found in both parents, giving priority to the first parent
in the list of parents following the “inherits” keyword. (“TraPPE” in this
example. Note: This feature has not been rigorously tested as of 2012-9-28.)

11.8.2 Inheritance vs. Nesting

If two molecules are related to each other this way: “A is a particular type of B”,
then consider using inheritance instead of nesting (or object composition).
In this example (with Butane and TraPPE ) either nesting or inheritance
would work.

Again, one very minor advantage to nesting Butane inside TraPPE, is
that it prevents the name Butane from being confused with or conflicting
with any other versions of the Butane molecule defined elsewhere. (Usually
this is not a consideration.)

11.8.3 Inheritance vs. Object Composition

On the other hand, if two molecules are related to each other this way:
“A is comprised of B and C”, then you might consider using object com-
position instead of inheritance. For example:

import "B.lt" # <-- defines the molecule type "B"

import "C.lt" # <-- defines the molecule type "C"

A {

b = new B

c = new C

}

12 Known bugs and limitations

Please report any bugs you find by email to , or to the
lammps-users mailing list.

1) Moltemplate requires a large amount of memory (RAM)
For example, setting up a system of 300000 atoms using moltemplate

currently requires 5GB of free memory (as of 2012-10-01). (Memory usage
appears to scale linearly with system size.) I am working to reducing these
requirements.
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Meanwhile this problem may be alleviated by using other python in-
terpreters with a lower memory footprint. Also, computers with a moder-
ate amount of RAM can be rented very cheaply. (For example, see http:

//cloud.google.com/products/compute-engine.html.)
When setting up large simulations consider using the “ulimit” command

before running moltemplate to prevent system crashes. (If you are on a
shared computer, ask an administrator to do this.) If these options are not
available, you can always run a resource monitor (like “top”) before starting
moltemplate and kill the process if it’s memory usage exceeds 80%.

2) Limited support for non-point-like atoms:
As of 2012-9-27, only the “full”, “angle”, “atomic”, “charge”, and “molec-

ular” styles have been tested. The “dipole” atom style is supported but has
not been tested. Non-point-like atoms like “ellipsoid”, “tri”, “line”, are
not rotated correctly by the “.rot()” command, or scaled correctly by the
“.scale()” command. More exotic exotic atom styles, such as “wavepacket”,
“election”, “sphere” and “peri” have not been tested. Feel free to contact
the author to request support for new atom styles.

3) Triclinic boundary conditions have not been tested:
As of 2012-9-27, support for PDB files with triclinic cells is experimental.

Please let me know if it is not working.
4) Inconsistent support for wildcard characters (“*” and “?”)
As of 2012-9-27, wildcard characters (“*” and ”?”) are interpreted dif-

ferently in different parts of an LT file. Wildcard characters work reliably
and are used for string pattern matching when inside any of the “By Type”
sections in an LT file (such as “Angles By Type”, “Dihedrals By Type”, and
“Impropers By Type”). However these characters are interpreted differently
when they appear in pair coeff, bond coeff, angle coeff dihedral coeff, and im-
proper coeff commands (and their corresponding “Coeff” sections of a data
file). LAMMPS interprets “*” characters appearing in coeff commands as
numeric wildcard characters. This can lead to unintended side-effects and
is discouraged. Currently, please avoid “*” characters in coeff commands.
They can be safely used in array brackets, [*], or in the “By Type” sections.
(See section 7.5 and appendix A.)
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Appendices

A Bonded interactions “By Type”

Interactions between atoms in LAMMPS are normally specified by atom
type, unless they are directly bonded together. However, as of 2012-3-07,
all bonded interactions, including 3-body angle, and 4-body dihedral and
improper interactions, are specified by uniqueby atom ID number. (There
are typically a large number of angles in a typical molecule, and the majority
of lines in a typical LAMMPS data file are used to keep track of them.)

This has changed in moltemplate.sh. moltemplate.sh contains a utility
which can generate angles, dihedrals, and impropers automatically by atom
and bond type. (This utility is described in section E.) moltemplate.sh will
inspect the network of bonds present in your system, detect all 3-body, and
4-body interactions, and determine their type. (Higher n-body interactions
can also be defined by the user.) Specifying interactions this way can elim-
inate significant redundancy since many atoms share the same type.

To make use of this feature, you would create a new section named
“Angles By Type”, “Dihedrals By Type”, or “Impropers By Type” whose
syntax mimics the “Angles”, “Dihedrals”, and “Impropers” sections of a
LAMMPS data file. The syntax is best explained by example:

write("Data Angles By Type") {

@angle:XCXgeneral * *C* *

@angle:CCCgeneral @atom:C @atom:C @atom:C * *

@angle:CCCsaturated @atom:C @atom:C @atom:C @bond:sp3 @bond:sp3

}

The first line will generate a 3-body angle interaction (of type “@angle:XCXgeneral”)
between any 3 consecutively bonded atoms as long as the second atom’s
type-name contains the letter “C”. (Atom and bond type-names can con-
tain wildcard characters *)

The second line will generate a 3-body interaction of type “@angle:CCCgeneral”
between any 3 atoms of type “@atom:C”, regardless of the type of bonds
connecting them. (The last two columns, which are both wildcard charac-
ters, *, tell moltemplate.sh to ignore the two bond types. Since this is the
default behavior these two columns are optional and can be omitted.)

The third line will generate a 3-body interaction of type “@angle:CCCsaturated”
between any 3 atoms of type “@atom:C”, if they are connected by bonds of
type “@bond:sp3”.

Note: The 2nd and 3rd lines in this example will generate new interac-
tions which may override any angle interactions assigned earlier.

Regular expressions

Regular-expressions can also be used to match potential atom and bond
types. (To use regular expressions, surround the atom and bond types on
either side by slashes. For example: @atom:C[1-5]/, should match @atom:C1
through @atom:C6.) Note: This feature has not been tested as of 2012-9-27.
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In a similar way, one can define “Dihedrals By Type” and “Impropers
By Type”.

B Using ltemplify.py to create an LT file

The ”ltemplify.py” script can be used to convert existing simple LAMMPS
input script and data files into a single “.lt” file. (Note: As of 2012-2-13,
ltemplify.py is experimental software, and does not work for every LAMMPS
DATA/INPUT file. Known limitations of ltemplify are listed below.)

Example 1

ltemplify.py -name Mol file.in file.data > mol.lt

This creates a template for a new type of molecule (named ”Mol”),
consisting of all the atoms in the lammps files you included, and saves this
data in a single LT file (”mol.lt”). This file can be used with moltemplate.sh
(and/or ttree.py) to define large systems containing this molecule.

Note: The input script (”file.in” in this example) should appear before
the data file (”file.data”) in the argument list.

In many cases, a LAMMPS data file may contain many copies of the
same molecule. In order to select one of these molecules you must manually
indicate the atoms which belong to that molecule. To do that, use the
following syntax:

Example 2

ltemplify.py -name Mol -molid "1" file.in file.data > mol.lt

In this example, only atoms belonging to molecule 1 are extracted.
This only works if you are using one of the ”molecular” atom styles.

If you are using a different atom style, you can select the atoms you want
either by type or by id number. To do that use the following syntax:

Example 3

ltemplify.py -name Mol -atomtype "1 2 3" lammpsfile.in lammpsfile.data > mol.lt

In this example, only atoms whose type is 1, 2, or 3 are included.

Example 4

ltemplify.py -name Mol -atomid "13 14 15 61*69" \

lammpsfile.in lammpsfile.data > mol.lt

In this example, only atoms whose ids are 13, 14, 15, and 61 through 69
are included.
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Limitations:

Limitations: Wildcard characters and ltemplify.py

Again coeff commands containing ”*” characters are risky, especially when
processed by ltemplify.py. This practice is discouraged. For example:

pair_coeff 1 * 0.15 3.2

pair_coeff 2*3 3 0.05 3.5

The only problem here is that, in principle, it is unlikely but possible
that once this file has been converted to LAMMPS template format (LT),
moltemplate may assign different numbers to these atom types. Although
the atom types in each expression will be correctly and uniquely identified,
the range of atoms in between may be incorrect. For example, the range
from “2*3” in the example above could in principle be replaced with “2*12”,
if the third atom type in the original file get’s assigned a “12”. (This only
happens if the user makes additional manual changes to the LT file after
it was generated.) To be on the safe side, try to avoid using “*” in any of
the “ coeff” commands in the input scripts that you pass to ltemplify.py (if
possible). Instead represent each interaction explicitly.

pair_coeff 1 1 0.15 3.2

pair_coeff 1 2 0.15 3.2

pair_coeff 1 3 0.15 3.2

pair_coeff 2 3 0.05 3.5

pair_coeff 3 3 0.05 3.5

(It is a good idea to do this in LT files as well.)

C Advanced moltemplate.sh Usage

moltemplate.sh has several optional command line arguments. These are
explained in below:

Usage:

moltemplate.sh [-atomstyle style] \

[-pdb/-xyz coord_file] \

[-a assignments.txt] file.lt

Optional arguments:

-atomstyle style By default, moltemplate.sh assumes you are using the "full"

atom style in LAMMPS. You can change the atom style to "dipole"

using -atomstyle dipole. If you are using a hybrid style,

you must enclose the list of styles in quotes. For example:

-atomstyle "hybrid full dipole"

For custom atom styles, you can also specify the

list of column names manually (enclosed in quotes):
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-atomstyle "molid x y z atomid atomtype mux muy muz"

-xyz xyz_file An optional xyz_file argument can be supplied as an argument

following "-xyz".

This file should contain the atomic coordinates in xyz format.

(The atoms must appear in the same order in the data file.)

-pdb pdb_file An optional pdb_file argument can be supplied as an argument

following "-pdb".

This should be a PDB file (with ATOM or HETATM records) with

the coordinates you wish to appear in the LAMMPS data file.

(The atoms must appear in the same order in the data file.)

If the PDB file contains periodic boundary box information

(IE., a "CRYST1" record), this information is also copied

to the LAMMPS data file.

(Support for triclinic cells is experimental as of 2012-2-13.

Other molecular structure formats may be supported later.)

-a "@atom:x 1"

-a assignments.txt

The user can customize the numbers assigned to atom, bond,

angle, dihedral, and improper types or id numbers by using

-a "VARIABLE_NAME VALUE"

for each variable you want to modify. If there are many

variables you want to modify, you can save them in a file

(one variable per line). For an example of the file format

run moltemplate.sh once and search for a file named

"ttree_assignments.txt". (This file is often located in

the "output_ttree/" directory.) Once assigned, the remaining

variables in the same category will be automatically assigned

to values which do not overlap with your chosen values.

-b assignments.txt

"-b" is similar to "-a". However, in this case, no attempt

is made to assign exclusive (unique) values to each variable.

-nocheck

Normally moltemplate.sh checks for common errors and typos and

halts if it thinks it has found one. This forces the variables

and categories as well as write(file) and write_once(file)

commands to obey standard naming conventions. The "-nocheck"

argument bypasses these checks and eliminates these restrictions.

C.1 Manual variables assignment (“-a” or “-b”)

It is possible to manually customize the values assigned to the atom types (or
to any other ttree-style variables). For example, consider the the “spce.lt”
file shown earlier. This file defines a single water molecule with two atom
types (hydrogen and oxygen). Typically the “O” atom type is normally

48



assigned to the integer “1”, and “H” would be assigned to “2”. This is
because “O” appears before “H” in that file. If you wanted to swap the
order, you could swap the order in which they first appear.

Alternately you can specify the atom assignments directly using one or
more “-a” flags followed by a quoted assignment string:

moltemplate.sh -a "@atom:SPCE/O 2" system.lt

This assigns the oxygen atom type to “2”. Note that quotes are neces-
sary around the ’@atom:SPCE/O 2’ string, which is a single argument.
(Also note that it is necessary to include SPCE/ before the O, because in
that example, this atom appeared (and was thus defined) inside the SPCE
molecule’s environment. Alternately, if it had been defined outside, globally,
then you could refer to it using “@atom:O”)

Variables need not be assigned to numbers. If for some reason, you want
to substitute “a string” everywhere this atom type appears, you would do
it this way:

moltemplate.sh -a ’@atom:SPCE/O "a string"’ system.lt

Multiple assignments can be made by using multiple “-a” flags:

moltemplate.sh -a ’@atom:SPCE/O 2’ -a ’@atom:SPCE/H 1’ system.lt

However if you have a large number of assignments to make, it may be more
convenient to store them in a file. You can create a two-column text file (for
example “new assignments.txt”) and run moltemplate this way:

moltemplate.sh -a new_assignments.txt system.lt

The contents of the “new assignments.txt” file in this example would be:

@atom:SPCE/O 2

@atom:SPCE/H 1

The order of lines in this file does not matter.

Using “-pdb” and “-a” together

If you are using the “-pdb” or “-xyz” flags, these must appear first. The
the “-a” (and “-b”) flags must appear at the end of the argument list (but
before the “.lt” file). For example:

moltemplate.sh -pdb file.pdb -a ’@atom:SPCE/O 2’ system.lt

Assigning $angle, $dihedral, $improper variables

In general any kind of variable can be assigned this way (not only atom
types), including $mol, $bond, @bond, @angle, $angle, ... as well as user-
defined variable type. Caveat: The only occasional exceptions are the $angle,
$dihedral, $improper variables. (When “Angles By Type” interactions are
selected by the user, and mixed with regular “Angles”, all of the $angle
variables are automatically generated. The same is true for “Dihedrals By
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Type” and “Impropers By Type”. See section E for an explanation of “By
Type” interactions.)

Angles, dihedrals, and impropers interactions are automatically gener-
ated, and in this case the user does not have the freedom to assign these
variables.

The “-b” flag

Note that when using the “-a” flag above, care will be taken to insure
that the assignment(s) are exclusive. None of the atom types (other than
@atom:SPCE/O) will be assigned “2”. (For this reason, using the “-a” flag
to change the atom type assignments can, in principle, alter the numbers
assigned other atom types, or variables.) This usually the desired behavior.
However suppose, for some reason, that you wanted to force a variable as-
signment, so that other variables in the same category are not effected. In
that case, you can use the “-b” flag:

moltemplate.sh -b ’@atom:SPCE/O 2’ system.lt

Keep in mind, that in this example, this could cause other atom-types (for
example “@atom:SPCE/H”) to be assigned to overlapping numbers.

The “ttree assignments.txt” file

Generally, after running moltemplate.sh, a “ttree assignments.txt” file will
be created (or updated if it is already present) to reflect any changes you
made. (This file is usually located in the “output ttree/” directory. It can
also be located the current directory “./”.) You can always check this to
make sure that the atom types (or any other ttree variables) were assigned
correctly.

The “ttree assignments.txt” file has the same format as the “new assignments.txt”
file example above.

Note: In both files, an optional slash, “/”, may follow the “@” or “$”
characters, as in “@/atom:SPCE/O”. (This slash is optional and indicates
the environment in which the counter is defined. The “@atom” counter is
defined globally. The “$resid” counter example described in section C.2 is
not.)

lttree.py and ttree.py also accept “-a” and “-b” flags

If for some reason, you are using “lttree.py” or “ttree.py” instead of “moltem-
plate.sh”, then the “-a” and “-b” flags explained here also work with these
scripts. They are not specific to moltemplate.sh.

C.2 Customizing the counting method using category

Variables in “.lt” files are assigned to integers by default, starting with 1, and
incrementing by 1. This can be overridden using the “category” command.
For example, to create a new variable category named “distance” which
starts at 0 and increments by 0.5, you would include this command in your
LT file:
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category $distance(0.0, 0.5)

C.3 Creating local independent counters

By default variables in a given category are always assigned to unique inte-
gers. This can be overridden using the “category” command. For example,
you might have a variable that keeps track of the position index of each
residue in each protein chain. The first residue in a protein (N-terminus)
is assigned “1”, the second residue, “2”, etc, regardless of the number of
protein chains in your system.

To do this, we can create a new variable category named “resid” which
is defined within the scope of each instance of the “Protein” molecule:

Residue {

write("Data Atoms") {

$atom:CA @atom:CA $resid:. 0.0 0.0 0.0 0.0

$atom:CB @atom:CB $resid:. 0.0 1.53 0.0 0.0

}

}

Protein {

category $resid(1,1)

residues = Residue[100]

}

proteins = Protein[10]

In this example, there are 10 proteins containing 100 residues each. The
“$resid” counters will be replaced with integers in the range 1 . . . 100, (not
1 . . . 1000, as you might expect). Because the “$resid” counter is local to
the protein it is defined within, “$resid” variables in other proteins do not
share the same counter, and can overlap.

C.4 Changing the variable counting order (“-order”)

Most variables are assigned automatically. By default static variables (@)
are assigned in the order they appear in the file (or files, if multiple LT files
are included). Subsequently, instance variables ($) are assigned in the order
they are created during instantiation. However you can customize the order
in which they are assigned.

Ordering

LT files are parsed by moltemplate.sh/lttree.py in multiple stages. The
“write once()” and “write()” commands are carried out in the static and
instance phases respectively, as explained below.

The static phase

In the “static” phase, “write once()” statements are carried out in the order
they are read from the user’s input file(s) (regardless of whether or not they
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appear in nested classes). Any “include” commands will effect this order.
After processing the class definitions, and carrying out the “write once()”
commands, lttree.py begins the instantiation phase.

The instantiation phase

During this phase, lttree.py makes copies of (instantiates) classes which were
requested by the user using the “new” command. During this stage, lttree.py
also appends data to files using the “write” command. (In this manual,
the “write()” and “new” are called instance commands.) The sequence of
alternating “write()” and “new” commands in the order that they appear
in the user’s input file(s). “new” commands recursively invoke any instance
commands for each copy of the class they create.

Static variable ordering (@)

By default, static @ variables are assigned in the order that they appear in
the user’s input file (after any “include” commands have been carried out).
This is true regardless of whether they appear in “write()” or “write once()”
commands, and whether they appear in nested classes. If “-order-dfs” is se-
lected, then static @ variables are defined in the order they appear in the
tree, with variables defined in the outermost nested class, (the global class
named “/”) define first. If this option is selected then static variables de-
fined in “write once()” commands are assigned to numbers first before any
variables in “write()” command are processed. (Position in the input file
is used as a secondary sort criteria.) On the other hand, the “-order-file”
command line option (described above) does not modify the numeric order-
ing of static variables (because they are ordered according to file position
by default).

Again, the counting of instance variables (prefixed by “$”) does not inter-
fere with static variable assignment. For example “@atom:x” and “$atom:x”
correspond to different variables and belong to different variable categories
(“@atom” and “$atom”) and they are assigned to numerical values indepen-
dently.

D Using lttree.py or ttree.py directly

(bypassing moltemplate.sh)

“moltemplate.sh” is only a simple script which invokes “lttree.py”, and
then combines the various output files generated by lttree.py into a single
LAMMPS input script and a data file, along with coordinate data. “lt-
tree.py” then invokes “ttree.py”. “ttree.py” lacks the ability to read or
generate coordinates, but is otherwise nearly identical to “lttree.py” and
“moltemplate.sh”.

If in the future moltemplate.sh no longer works with some new, recently
added LAMMPS feature, you can bypass moltemplate.sh and run lttree.py
or ttree.py directly. Everything moltemplate.sh does can essentially be done
by hand with a unix shell and a text editor. This procedure is outlined below.
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D.1 First run ttree.py

The syntax for running ”ttree.py” is identical to the syntax for running
moltemplate.sh. The moltemplate.sh syntax is explained above.

Unfortunately, ttree.py does not understand the -pdb or -xyz arguments
for processing coordinate data. If you run ”ttree.py” directly, then you must
extract the coordinate data from these files yourself and insert it into your
lammps input files manually. This is explained below.

Example: Go to the examples/waterSPCE/ directory and run:
ttree.py system.lt
This will prepare LAMMPS input files for a system of 32 water molecules.

(In this example, we are using the ”SPCE” water model.)
Running the command above will probably create the following files:

“Data Atoms” (The ”Atoms” section of a LAMMPS data file, w/o coordi-
nates) “Data Bonds” (The ”Bonds” section of a LAMMPS data file) “Data
Angles” (The ”Angles” section of a LAMMPS data file) “Data Masses” (The
”Masses” section of a LAMMPS data file) “In Init” (The ”Initialization” sec-
tion of a LAMMPS input script.) “In Settings” (The ”Settings” section of
a LAMMPS input script, which typically contains force-field parameters,
group defs, and constraints) “Data Boundary” (The ”Periodic Boundary
Conditions” section of a LAMMPS data file.) “ttree assignments.txt” (Vari-
able assignments. See “customization” section.)

This data can be easily combined into a single LAMMPS data file and
a single lammps input script later on, using a text editor, or the unix ”cat”
and ”paste” commands.

It may also create these files: “Data Angles By Type”, “Data Dihedrals
By Type”, “Data Impropers By Type”. These files tell moltemplate how to
automatically generate bonded-interactions by atom and bond type. They
must be converted to lists of angles, dihedrals, and impropers, using the
“nbody by type.py” utility (as explained in appendix A).

D.2 Then create a LAMMPS data file

Create a new file (”system.data” in this example), and paste the following
text into it:

Create the “header” section

Example:

LAMMPS Description

96 atoms

64 bonds

32 angles

0 dihedrals

2 atom types

1 bond types
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1 angle types

0 dihedral types

0.000000 9.043 xlo xhi

0.000000 15.663 ylo yhi

0.000000 7.361 zlo zhi

If you use ttree.py, will have to count the number of atoms, bonds, and atom
types, bond types etc. yourself.

Note: the numbers in the ”xlo xhi” ”ylo yhi” ”zlo zhi” lines determine
the simulation box size, and will vary from system to system. If ttree created
a file named ”Data Boundary”, you can copy this information from there.
(Triclinic cells have a fourth line containing the ”xy xz yz” parameters.) (If
you have a .PDB file, these boundary box numbers are in the ”CRYST1”
line near the beginning of the file.)

Once you’ve created the ”header” section of the data file, paste the other
sections to the end of your LAMMPS data file (with the appropriate section
headings and blank lines).

echo "" >> system.data

echo "Atoms" >> system.data

echo "" >> system.data

cat "Data Atoms" >> system.data

echo "" >> system.data

echo "Bonds" >> system.data

echo "" >> system.data

cat "Data Bonds" >> system.data

echo "" >> system.data

echo "Angles" >> system.data

echo "" >> system.data

cat "Data Angles" >> system.data

echo "" >> system.data

echo "Masses" >> system.data

echo "" >> system.data

cat "Data Masses" >> system.data

echo "" >> system.data

Depending on your system, you may also have these files as well: “Data
Dihedrals” “Data Impropers” “Data Bond Coeffs” “Data Angle Coeffs”
“Data Dihedral Coeffs” “Data Improper Coeffs”. If so, then then append
them to the end of your data file as well. (There are numerous other optional
sections for “class2” force-fields. Exotic atom styles also require their own
sections such as “lines” “ellipsoids” and “triangles”. Consult the LAMMPS
documentation for details on these as well.)

D.3 Now create the LAMMPS input script

echo "include \"In Init\"" > system.in

echo "read_data system.data" >> system.in

echo "include \"In Settings\"" >> system.in
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Lastly, you have to worry about supplying the atomic coordinates. (Unlike
moltemplate, ttree.py does not handle atom coordinates.)

The following commands are useful for extracting coordinates from PDB
or XYZ files and converting them to LAMMPS input script commands:

D.4 Extract coordinates

To extract coordinates from a .PDB file (”file.pdb”), use:

awk ’/^ATOM |^HETATM/{print substr($0,31,8) \

" "substr($0,39,8) \

" "substr($0,47,8)}’ \

< file.pdb \

> tmp_atom_coords.dat

(Note: There should be two spaces following the word “ATOM” above.)
To extract coordinates from an XYZ file (”file.xyz”), use:

awk ’function isnum(x){return(x==x+0)} \

BEGIN{targetframe=1;framecount=0} \

{if (isnum($0)) {framecount++} else \

{if (framecount==targetframe) { \

if (NF>0) { \

if ((NF==3) && isnum($1)) { \

print $1" "$2" "$3} \

else if ((NF==4) && isnum($2)) { \

print $2" "$3" "$4} }}}}’ \

< file.xyz \

> tmp_atom_coords.dat

D.5 Convert the coordinate file to LAMMPS input script
format

awk ’{if (NF>=3) { \

natom++; print "set atom "natom" x "$1" y "$2" z "$3" "}}’ \

< tmp_atom_coords.dat \

>> system.in.coords

Finally import ”system.in.coords” in your lammps input script using:

echo "include \"system.in.coords\"" >> system.in

E Using the nbody by type.py utility

(bypassing moltemplate.sh)

moltemplate.sh uses the “nbody by type.py” utility to generate many-body
interactions between bonded atoms by atom type. In the event that moltem-
plate.sh crashes or is not up-to-date with LAMMPS, you can assign inter-
actions by type by manually invoking nbody by type.py yourself.
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As an example, the following command will generate a file “Angles”
containing lines of text which should eventually be pasted into the “Angles”
section of a LAMMPS data file:

nbody_by_type Angles \

-atoms "Data Atoms" \

-bonds "Data Bonds" \

-nbodybytype "Data Angles By Type" \

> "Data Angles"

For dihedral or improper interactions, repeat the command above, and
replace “Angles” with “Dihedrals”, or “Impropers” everywhere.

Note: The above instructions work assuming that you do not use any
wildcard characters (“*” or “?”) or regular expressions in your “Angles By
Type” section. If you use wildcards or regular expressions, then you must
run the program this way:

nbody_by_type Angles \

-atoms "Data Atoms.template" \

-bonds "Data Bonds.template" \

-nbodybytype "Data Angles By Type.template" \

> "Data Angles.template"

Afterwards, you must then replace each variable in the “Angles.template”
file with the appropriate integer before you copy the contents into the LAMMPS
data file. (The ttree render.py program may be useful for this. Open the
moltemplate.sh file with a text editor to see how this was done.)

Note that “Data Atoms”, and “Data Bonds” refer to files which are
normally created by “ttree.py” or “lttree.py” which contain atom and bond
data in LAMMPS data file format, respectively. Similarly “Data Angles
By Type” refers to a file containing instructions for how to automatically
generate angles by atom type. (Again, this would typically be generated by
running “ttree.py” or “lttree.py” on an LT file containing a block of text
wrapped inside a “write once(’Data Angles By Type’)” command.)

Note: if you already have existing “Data Angles”, you can add them to
the list of angle interactions created by nbody by type.py.

nbody_by_type Angles \

-atoms "Data Atoms" \

-bonds "Data Bonds" \

-nbodyfile "Data Angles" \

-nbodybytype "Data Angles By Type" \

> extra_Angles.tmp

cat extra_Angles.tmp "Data Angles" > new_Angles

mv -f new_Angles "Data Angles"

rm -f extra_Angles.tmp

E.1 Usage

For reference, the complete man page for the “nbody by type.py” command
is included below.
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nbody_by_type.py reads a LAMMPS data file (or an excerpt of a LAMMPS)

data file containing bonded many-body interactions by atom type

(and bond type), and generates a list of additional interactions

in LAMMPS format consistent with those type (to the standard out).

Typical Usage:

nbody_by_type.py X < old.data > new.data

--or--

nbody_by_type.py X \

-atoms atoms.data \

-bonds bonds.data \

-nbody X.data \

-nbodybytype X_by_type.data

> new_X.data

In both cases "X" denotes the interaction type, which

is either "Angles", "Dihedrals", or "Impropers".

(Support for other interaction types can be added by the user. See below.)

-------- Example 1 -------

nbody_by_type.py X < old.data > new.data

In this example, nbody_by_type.py reads a LAMMPS data file

"orig.data", and extracts the relevant section ("Angles",

"Dihedrals", or "Impropers"). It also looks a section named "X By Type",

(eg. "Angles By type", "Impropers By type", "Impropers By type")

which contains a list of criteria for automatically defining additional

interactions of that type. For example, this file might contain:

Angle By Type

7 1 2 1 * *

8 2 2 * * *

9 3 4 3 * *

The first column is an interaction type ID.

The next 3 columns are atom type identifiers.

The final 2 columns are bond type identifiers.

The * is a wildcard symbol indicating there is no preference for bond types

in this example. (Optionally, regular expressions can also be used to

define a type match, by enclosing the atom or bond type in / slashes.)

The first line tells us to that there should be a 3-body "Angle"

interaction of type "7" whenever an atom of type 1 is bonded to an atom
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of type "2", which is bonded to another atom of type "1" again.

The second line tells us that an angle is defined whenever three atoms

are bonded together and the first two are of type "2".

(Redundant angle interactions are filtered.)

New interactions are created for every group of bonded

atoms which match these criteria if they are bonded together

in the relevant way for that interaction type (as determined by

nbody_X.py), and printed to the standard output. For example,

suppose you are automatically generating 3-body "Angle" interactions using:

nbody_by_type Angles < old.data > new.data

The file "new.data" will be identical to "old.data", however the

"Angles By Type" section will be deleted, and the following lines of

text will be added to the "Angles" section:

394 7 5983 5894 5895

395 7 5984 5895 5896

396 7 5985 5896 5897

: : : : :

847 9 14827 14848 14849

The numbers in the first column are counters which assign a ID to

every interaction of that type, and start where the original "Angles"

data left off (New angle ID numbers do not overlap with old ID numbers).

The text in the second column ("7", "9", ...) matches the text from the

first column of the "Angle By Type" section of the input file.

-------- Example 2 -------

nbody_by_type.py X \

-atoms atoms.data \

-bonds bonds.data \

-nbody X.data \

-nbodybytype X_by_type.data \

> new_X.data

In particular, for Angle interactions:

nbody_by_type.py Angles \

-atoms atoms.data \

-bonds bonds.data \

-nbody angles.data \

-nbodybytype angles_by_type.data \

> new_Angles.data

When run this way, nbody_by_type.py behaves exactly the same way
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as in Example 1, however only the lines of text corresponding to

the new generated interactions are printed, (not the entire data file).

Also note, that when run this way, nbody_by_type.py does not read the

LAMMPS data from the standard input. Instead, it reads each section of

the data file from a different file indicated by the arguments following

the "-atoms", "-bonds", "-nbody", and "-nbodybytype" flags.

"Angles" is a 3-body interaction style. So when run this way,

nbody_by_type.py will create a 5 (=3+2) column file (new_Angles.data).

Note: the atom, bond and other IDs/types in need not be integers.

Note: This program must be distributed with several python modules, including:

nbody_Angles.py, nbody_Dihedrals.py, and nbody_Impropers.py. These

contain bond definitions for angular, dihedral, and improper interactions.

E.2 Custom bond topologies

Currently nbody by type.py can detect and generate “Angle” and “Dihe-
dral” interactions between 3 and 4 consecutively bonded atoms. It can also
generate “Improper” interactions between 4 atoms bonded with a T-shaped
topology (one central atom with 3 branches). The nbody by type.py script
imports external modules named “nbody Angles.py”, “nbody Dihedrals.py”,
and “nbody Impropers.py” to help it detect angles, dihedrals, and improper
interactions automatically. In case any new interaction types are ever added
to LAMMPS, it is easy to define new bonded interaction types by supply-
ing a new “nbody X.py” python modules. These python files are usually
only a few lines long. Copy one of the existing modules “nbody Angles.py”,
“nbody Dihedrals.py”, or “nbody Impropers.py”) and modify it to the sub-
graph inside to match the bonded network that you want to search for.

F Variable syntax details

Counter variables have names like $CPATH/CATNAME:LPATH
All counter variables have 3 parts:

CPATH, the category scope object (which is usually omitted)

CATNAME, the category name

LPATH, the “leaf path”. This includes the variable’s name and (op-
tionally) the location of that variable in the object tree relative to the
object in which the variable is referenced (the current-context object)

Typically the CPATH is omitted as in the examples “@atom” “$atom”,
“$mol”. However the CPATH can be specified explicitly as in “$/atom:”
(“/” denotes explicitly that the counter has global scope). Another exam-
ple with an explicit CPATH is the custom local counter variable named
“$/proteins[5]/resid:.” (See section C.3.) In that example, the CPATH is
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“$/proteins[5]”, the CATNAME is “resid”, and the LPATH is “.”. (Even
though the CPATH was omitted in section C.3, the meaning is the same.
Usually the CPATH does not need to be stated explicitly. See section F.2
below.)

F.1 General variable syntax

The ellipsis (“...”) commonly appears in counter variables (or it is implied).
The most complex and general variable syntax is:

$CPATH/.../CATNAME:LPATH
This means: find the closest ancestor of the CPATH object containing

a category named “CATNAME”. This ancestor determines the category’s
scope. Counter variables in this category are local to ancestors of that object.
In this case, LPATH identifies the location of the variable’s corresponding
“leaf” object relative to the category scope object. On the other hand, if the
the category’s scope (CPATH) was not explicitly stated by the user, then
the LPATH identifies the location of the leaf object relative to the object in
which the variable was referenced (the current-context).

F.2 Variable shorthand equivalents

$CATNAME:LPATH is equivalent to ”$.../CATNAME:LPATH”

This means: find the closest direct ancestor of the current object containing
a category whose name matches CATNAME. If not found, create a new
category (at the global level). This is the syntax used most frequently in LT
files.

If the colon is omitted, as in $LPATH/CATNAME, then it is equivalent
to: $CATNAME:LPATH. Again, in these cases, LPATH is a path which is
relative to the object in which the variable was referenced.

If $LPATH is omitted, then this is equivalent to $CATNAME:. In other
words, the the leaf node is the current node, “.”. (This syntax is often used to
count keep track of molecule ID numbers. You can use the counter variable
“$mol” to keep track of the current molecule id number, because it counts the
molecular objects in which this variable was defined. In this case the name
of the category is ”mol”. As in most examples, the category object, CPATH,
is not specified. This means the category object is automatically global. A
global category object means that every molecule object is given a unique ID
number which is unique for the entire system, not just unique within some
local molecule. As a counter-example, consider amino acid residue counters.
Each amino acid in a protein can be assigned a residue ID number which
identifies it within a single protein chain. However because their category
was defined locally at the protein level, these residue ID numbers are not
global, and are not uniquely defined if there are multiple protein chains
present.)

$CPATH/CATNAME:LPATH/...

(SHORTHAND equivalent)
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Find the category name and object corresponding to ”$CPATH/CATNAME:”
(see above) If $CPATH/ is blank, then search for an ancestor with a category
whose name matches CATNAME, as described above. To find the variable’s
corresponding ”leaf object”, start from the CURRENT object (not the cat-
egory object). If LPATH is not empty, follow LPATH to a new position
in the tree. Otherwise, start at the current object. (An empty LPATH
corresponds to the current object.) From this position in the object tree
search for a direct ancestor which happens to also be ”leaf object” for some
other variable which belongs to the desired category. If no such variable is
found, then ttree creates a new variable whose leaf object is the object at
the LPATH position, and put it in the desired category.

$LPATH/.../CATNAME is equivalent to $CATNAME:LPATH/...

(SHORTHAND equivalent)
If LPATH is omitted, then start from the current node. (In the molecular

examples, ”$.../mol” is a variable whose category name is ”mol”. The ”leaf
object” for the variable is either the current object in which this variable
was defined, OR a direct ancestor of this object which has been assigned to
a variable belonging to the category named ”mol”. In this way large objects
(large molecules) can be comprised of smaller objects, without corrupting the
”mol” counter which keeps track of which molecule we belong to. In other
words, ”$.../mol” unambiguously refers to the ID# of the large molecule to
which this sub-molecule belongs (regardless of however many layers up that
may be).)

$CPATH/CATNAME:LPATH

Variables in the output ttree/ttree assignments.txt file use the this syntax.
Finally, if the user explicitly specifies the path leading up to the cat

node, and avoids using ”...”, then LPATH is interpreted relative to the
category object, not the current object (however CPATH is interpreted rel-
ative to the current object). This happens to be the format used in the
”ttree assignments.txt” file (although you can use it anywhere else in an
“.LT” file). In ”ttree assignments.txt” file, CPATH is defined relative to the
global object. The variables in that file always begin with ”$/” or ”@/”. The
slash at the beginning takes us to the global environment object (to which all
the other objects belong). (Since the variables in the ”ttree assignments.txt”
always begin with ”$/” or ”@/”, this distinction is usually not important
because the category object for most variables usually is the “global” root
object.)
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