
Introductory LAMMPS Hands-on Tutorial

Prepared by:
Kyle Hall (kylewmhall@gmail.com)

&
Axel Kohlmeyer (akohlmey@gmail.com)

1 Introduction
This tutorial provides a brief overview of using LAMMPS to create and simulate atomic and molecular 
systems.  This document will walk you through a series of LAMMPS commands and sample simulations 
while focusing on two particular systems, an pure argon system and a solvated polyethylene chain. 
Throughout this document, you will find a series of Tasks. These are places for you to expand your 
knowledge and try running some simple simulations.  The tasks build on each other, so it is recommended
that you go through the tutorial sequentially.  This LAMMPS tutorial requires you to make extensive use 
of the LAMMPS documentation/manual, which is provided locally in PDF format and can be accessed at 
via the internet at http://lammps.sandia.gov/doc/Manual.html 

You have been provided with a Windows Installer Package and a Linux virtual machine where you have 
compiled a custom LAMMPS executable from source. The following exercises should work equally well 
with either executable. For the customized Linux executable, you may need to include additional 
packages and re-compile. Unpack the archive with the provided inputs and work your way through this 
document.  Inside the archive, you will see two folders: argon and solvatedPE.  These folders contain the 
files that you will need for completing Sections 2-4 of this tutorial. As you complete each task, put its 
input script in a new folder and run LAMMPS from that folder. That will allow you to keep the input 
scripts separate and compare their results.

 Note: When you run a LAMMPS simulation, LAMMPS overwrites files, so running two simulations 
in the same folder generally means that you will at least partially overwrite/lose the results of one of 
the simulations.

You can run LAMMPS from the command line using:

lmp_serial -in MyInputFile

or

lmp_mpi -in MyInputFile

or

lmp -in MyInputFile

where lmp_serial, lmp_mpi, or lmp is the name of the specific LAMMPS executable and 
MyInputFile is the input script that you want LAMMPS to execute.

This tutorial is meant to be completed from the command line, and assumes that you are comfortable 
modifying text files from the command line using vi or nano or similar text editors.
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2 Constructing and Running a Basic Argon System

2.1 LAMMPS Script Basics & Building a System from Scratch
This subsection introduces you to some fundamental LAMMPS commands in the context of simulating 
condensed argon.  The following walks you through the commands appearing in the input file in.argon  
in.argon is located in the folder argon

2.1.1 Specifying Characteristic of your LAMMPS Simulation
Running simulations involves many choices beyond which system you want to study. Sometimes, these 
decisions are a matter of preference, and might not dramatically change a simulation’s results.  For 
example, you can use many different units systems with LAMMPS (e.g., reduced units, metric, cgs).  If 
you properly convert input files and scripts, you could probably simulate a system using several different 
units systems; however, one alternative is often easier or more desirable. In this Section, you will simulate
argon.  You could use reduced units for the simulation, but let’s stick to what LAMMPS calls real units 
where distances are measured in Angstrom, time in femtoseconds, energy in kcal/mol, etc. You can set 
the units for your simulation using the units command.  

units    real

This is the first command in in.argon.  Look at the LAMMPS documentation both for more information 
about the units command and for details about what is meant by real units.

Most choices, if not all, will substantially impact your simulation results, so great care should be taken 
when making methodological choices at the start of a project. For example, consider boundary conditions 
(i.e., the properties of the edge of your simulation box). Often we want to simulate bulk (infinite) systems,
but can only conduct a very small, finite-size simulation.  To overcome this, we can use periodic 
boundary conditions.  This means that space is wrapped and continuous.  For each direction, if a particle 
exits one side of the box (e.g., the right side) then it enters via the opposite side of box (e.g., the left side).
The following boundary command enforces this behaviour for the x, y and z directions of your soon-to-be
LAMMPS simulation cell, and this is the second command in in.argon.

boundary    p p p

You could also choose to simulate a non-periodic finite system, but that alternative system would have 
very different behaviour.  Moreover, when you use finite boundary conditions, you must be very careful 
with how you setup and carry out your LAMMPS simulation, or you will encounter errors.  This is not a 
shortcoming of LAMMPS, but reflects the difficulties associated with simulating finite systems.  You 
should carefully consider all methodological details of a simulation before starting any calculations. 

You need to tell LAMMPS what types of attributes it should expect, store and print for the particles that 
will be in your system. You tell LAMMPS this information using the atom_style command.  In this 
Section, you will simulate an argon system, so the atomic option is reasonable. 

atom_style    atomic

Based on this command, LAMMPS will now store the velocities, coordinates and atom type for the atoms
in your system.  But you do not currently have a system or atoms…   
You now need to construct your argon system.
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2.1.2 Constructing a system with atoms on a 3D lattice
One of the easiest ways to create a system is to place particles (e.g., atoms or molecules) on a lattice – a 
repeating ordered pattern in 3D space.  This is not appropriate for all systems and research questions, but 
it is a reasonable starting point for your argon simulation. Creating a system where particles occupy space
according to a lattice involves several steps in LAMMPS.

Step 1: Constructing a lattice
The lattice command provides a quick way to specify some standard lattice patterns. Here, you will create
a face-centered cubic (fcc) lattice to get started with a lattice constant of 6.0 Å. 
 

lattice    fcc 6.0

Because you have already specified that LAMMPS use real units, LAMMPS knows to interpret 6.0 in the
lattice command as 6.0 Å.

Step 2: Constructing the simulation box
The region command  allows you to specify geometrical regions. Because you have already defined a 
lattice, you can use the block option to make a region that it some multiple of the specified lattice 
constant.

region     boxID block 0.1 10.1  0.1 10.1  0.1 10.1

The pairs of numbers indicate the lower and upper limits along the x, y and z axes.  For example, in the 
box command, the extent of the region you are defining is 0.6 Å (0.1*6.0 Å) to 60.6 Å (10.1*6.0 Å) along
x given that the lattice constant is 6.0 Å.

Between region and block is an identifier boxID. A number of LAMMPS commands must be assigned 
identifiers. User-assigned identifiers generally appear after a command’s name and before the command’s
subsequent options/flags. Identifiers allow subsequent commands to the use the lists or data resulting 
from the labelled command.  For example, the region command only defines a region of space, and does 
not construct our simulation box.  By passing the identifier boxID to create_box, create_box can create a 
simulation box consistent the region command labelled boxID.  

create_box    1 boxID

Unlike region, create_box does not have an identifier.  The 1 after create_box instead indicates the 
number of different atom types that will be present in the boxID region. 

Step 3: Filling the simulation box with particles
While region and create_box can create a simulation box (the volume that you will simulate), you still do 
not have any atoms in the simulation. In LAMMPS, there are many ways to fill a simulation cell with 
atoms or molecules, and many 3rd-party tools are available for creating more complex systems.  One of 
the simplest commands for filling a simulation cell with particles (either atoms or molecules) is 
create_atoms. Like create_box, it lacks an identifier.

create_atoms    1 box

The number after create_atoms is the number of different atom types to be added to the simulation box.  
Here, the value is 1 because you only have one atom type; you will be simulating pure argon. Specifying 
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the box option tells LAMMPS to fill your newly created box according to the lattice that you previously 
specified. You can also use create_atoms create a random distribution of particles or a single particle in a 
simulation cell.

Note: Nasty problems can arise when using create_atoms to position atoms on a lattice, though you 
should not encounter them as you go through this tutorial. Take a look at the unit cell for a face-
center cubic lattice before proceeding in order to help you see why.

If your box perfectly aligns with lattice’s particle positions, then there is an ambiguity about what to do 
with particles appearing right at the edge of the unit cell.  This situation illustrated below using a simple 
cubic lattice and two unit cells.

Figure 1. A simulation box defined on a simple cubic lattice that is two unit cells wide, and spans xstart to 
xend along the x axis.

You might think that LAMMPS would need to add atoms at both xstart and xend to construct the system in 
Figure 1.  However, your simulation is periodic, so xstart and xend are actually the same position.  In turn, 
LAMMPS has to sort our whether to put a particle at xstart or xend, and make sure that it does not add 
particles at both positions.  For cubic lattices, LAMMPS can generally sort this out, but it becomes harder
with other lattice types, particularly custom lattices.  If LAMMPS does put two particles in the same 
position, then there will definitely be problems with your simulation (e.g., exploding simulations, 
extremely large forces, etc.).  To avoid these problems, it is best to specify your simulation box so that 
lattice particle positions do not coincide with the boundaries of your simulation box (see Figure 2).  This 
is why the region block command in in.argon specifies each axis range as 0.1 to 10.1, and not 0.0 to 
10.0.

Figure 2. A simulation box defined on a simple cubic lattice that is two unit cells wide.  The simulation 
box is shifted with respect to the underlying lattice.
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Step 4: Specify the properties of the atoms
Up to this point you have established atomic positions within your system for atom type 1, but have not 
specified any information about atom type 1, such as its atomic mass or how the atoms of type 1 will 
interact. LAMMPS needs that information to perform your simulation, and your choices here strongly 
influence whether the atom type 1 accurately represents argon atoms. Some relevant parameter and 
interaction specifications are provided for you in in.argon on lines 13-16. This information is 
delimited in the input file by comment lines; LAMMPS interprets lines beginning with # as comments 
and ignores them. 

Take several moments to analyze the meaning of lines 13-16 in in.argon using the LAMMPS 
documentation.  You may find it helpful to annotate a physical copy of in.argon as you do this.  This will 
help you start familiarizing yourself both with the logic and syntax of LAMMPS commands, as well as the
LAMMPS documentation; two very important things for people wanting to use LAMMPS.

2.1.3 Running a simulation
Now that you have a simulation box full of atoms, you need to specify how positions and velocities will 
be updated as your simulation progresses, this can be done using fix commands such as…

fix ensembleFix all nve

In LAMMPS, fix commands specify operations that occur for groups of particles within a system as that 
system temporally evolves (or is energetically minimized). The basic format of a fix command is a fix 
identifier, a label indicating the group of particles on which the fix operates, and the style (i.e., nature) of 
the fix. In the above example, these are ensembleFix, all and nve, respectively. The group specifier all 
indicates that this fix will apply to all atom types in your system. The style nve indicates that particle 
positions and velocities are to be updated in a way consistent with the microcanonical ensemble (NVE 
ensemble).  More specifically, LAMMPS will use discretized integration of Newton’s equations of 
motion to evolve the system.

Note: Even though you choose the fix nve in your input script, that does not necessarily mean that you 
are performing a microcanonical (NVE) simulation.  If you have additional fixes or operations in your
LAMMPS input file such as thermostating, you can perturb the dynamics of your particle away from 
those of the mircocanonical ensemble.

Now that you have specified how LAMMPS should update particle positions, you now just need to 
specify how long you want your simulation to run. This is done with the run command.

run    4000

The number after run indicates how many times you want the simulation to update the positions of the 
particles (i.e., the number of timesteps in the simulation). 

Now try running your argon simulation by using in.argon as your input script, and executing
lmp_serial –in in.argon from the terminal in the directory containing in.argon.
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2.2 Argon Simulation Debrief

2.2.1 Your input is underspecified
You initial argon simulation should have run without any errors. You should be concerned.  

Your input file in.argon lacks a lot of important information that is necessary to conduct a molecular 
simulation.  For example, you specified how many times LAMMPS should update the positions of the 
particles in the argon system (4000, to be exact).  However, to integrate the equations of motion and thus 
update particle positions, LAMMPS needs to know the simulation’s timestep – the window of simulation 
time between each position update (often one to several femtoseconds for classical Molecular Dynamics 
simulations). A simulation’s timestep is very important.  If it is too large, it will be difficult to evolve the 
system and artifacts are likely to occur since a particle’s current position, velocity and forces become 
unreliable indicators of its future position.  Alternatively, if the timestep is too small, then LAMMPS 
spends a lot of time calculating minor changes, and the productivity of the simulation is reduced. 
However, you did not have to worry about selecting a timestep for the argon simulation.  This is because 
LAMMPS has a default of 1.0 fs when using real units.

LAMMPS has many pre-set defaults that you can either use or override.  The simulation’s timestep is one
example.  Another example is how the particle positions are temporally evolved.  There are different 
numerical integration schemes that can be used to update particle positions during a simulation, and this 
can be set in LAMMPS using the run_style command.  Both the simulation’s timestep and its numerical 
integration scheme are important factors when starting a simulation.  The danger with relying on defaults 
is that you might be leaving important methodological choices to the whims of LAMMPS defaults, and 
those defaults might be poor choices for your systems.

Task #1: Make a copy of in.argon, and call it in.task-01.  In in.task-01, set the simulation’s 
timestep to 2.0 fs using the timestep command.  Consult the LAMMPS documentation as need. Note that 
this command needs to appear before the run command.  Try re-running your simulation with in.task-
01 to make sure that your revised script is working properly.

2.2.2 Why did I not get more information?
Your initial argon simulation yielded a log.lammps file.  Take a moment to look at this file.  Can you 
see from this file how LAMMPS went sequentially through the lines in your LAMMPS input script?  

While the log.lammps file provides a small amount of detail, you will need much more information if 
you want to understand the argon system that you are simulating.  You might want system configurations 
(i.e., how the particles are distributed in your simulation box), thermodynamic information as the system 
evolves, or even on-the-fly movies or snapshots of the system.  LAMMPS can provide all of this and 
more, but it only does so if you explicitly instruct it to save specific types of data.

Task #2: Copy in.task-01, and call it in.task-02.  Adapt in.task-02 so that LAMMPS will 
perform the following operations when you simulate your argon system with in.task-02

 Write the system’s thermodynamic information (e.g., T and P) every 200.0 fs using the thermo 
command. Look in the LAMMPS documentation at option one for the thermo_style command if 
you want to know precisely what will be written out.

 Create snapshots of the simulation’s evolution on-the-fly using images 2000.0 fs apart. Hint: you 
need to replace the XXX’s in the following command.  Consider how argon*.jpg is treated by 
LAMMPS since this it is a common strategy for specifying write-outs in LAMMPS.
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dump            XX XX image XX argon*.jpg type type

Task #2 Follow-up: Look at the first and last jpeg images of your simulation.  You can view them them 
in the graphical interface with an image viewer or a web browser. How are the images similar and/or 
different? Now, look at log.lammps, which should now have much more information in it. Are your 
insights from the images consistent with the system’s properties during the simulation?  

3 Putting the dynamics in Molecular Dynamics
When you ran your adapted in.task-02 input script, you should have seen that the argon atoms 
essentially did not move and that your simulation had a temperature very close to 0 K.  You properly 
created an argon system with particles periodically arranged with no initial velocities, so there really is no
reason for them to move.  Your results are physically reasonable given the system you created and 
simulated, but not particularly interesting or physically relevant.

3.1 Adding velocities and seeing things moving

The velocity command allows you to assign initial velocities to the particles in your system after you have
created a system or read in a system configuration).

Task #3:  Copy in.task-02 to make in.task-03, and add the following two lines immediately 
after the argon parameters portion of the script (i.e., lines 11-17). 

variable      temp    index   100.0
velocity        all create ${temp} 11235712 mom yes rot yes dist gaussian

In the first line, the variable command assigns 100.0 to the variable temp, which you can then access later
in your input script, such as in the following velocity command.  Here, the velocity command is, for all 
particles, generating velocities (hence, the create option) consistent with a temperature of temp (100 K). 
The additional options are modifying the behaviour of velocity.  See the LAMMPS documentation for 
more details.

By putting variable commands at the start of your input script and using them throughout a longer 
LAMMPS input script to specify information (e.g., temperature), you can quickly modify your scripts as 
need arises to, for example, do simulations at multiple temperatures, without going through your entire 
LAMMPS script and doing many low-level, repetitious changes.

Run an argon simulation using your newly created in.task-03 input script.

Task #3 Follow-up: Look again at the first and last jpeg images of your simulations to confirm that the 
particles are now moving during your simulation, and then look at the log.lammps file.  What is the 
temperature and pressure at the end of your simulation?  Does the system stay at 100 K once you start 
your simulation?  

3.2 Thermostats and Barostats

The argon particles in your system are now moving, but the temperature of the system does not stay at 
100 K, but decreases. The system’s pressure also corresponds to a large negative value (hundreds of atm 
of tension). Your are performing an NVE simulation so the total energy of the system should be 
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conserved and not temperature.  As well, conducting a NVE simulation means that the volume of the box 
is fixed, so our system’s density and pressure will depend on how you initially set up the system.  A 
system’s temperature and pressure can be regulated using  thermostats and barostats, respectively.  You 
will now add commands to control temperature and pressure in your argon simulation.

3.2.1 Thermostating -  Langevin 
Using a Langevin thermostat is a reasonable way to thermally equilibrate a system.  Briefly, a Langevin 
thermostat operates by modifying the forces used to calculate particle displacements so that they now 
include: 1) a drag term that works to decelerate particles, and 2) a random force term emulating a 
particle’s interactions with an artificial, nonexistent bath of particles at the desired temperature.  The 
interactions between particles within the simulation are still calculated; there are just now additional 
forces at play. Through the balance between drag and random force effects, the system will eventually 
arrive at the desired temperature. You can add a Langevin thermostat to a LAMMPS simulation using the 
fix langevin command. 

Task #4: Make a copy of in.task-03, and call it in.task-04.  Add a Langevin thermostat to your 
argon simulation by adding the following fix langevin command to in.task-04 after your fix nve 
command. Use the LAMMPS documentation to decide what to replace the XXX’s with, and remember 
that you are trying to simulate your argon system at 100.0 K.  You have already defined the variable temp
to represent 100.0, so you should use it to complete the fix langevin command. 

fix    langevinFix XXX langevin XXX XXX  100.0 1111111 zero yes 

Run in.task-04 when you are ready.

Task #4 Follow-up: Look at log.lammps to see the temperature of your argon simulation as a function of 
time.  How does the instantaneous temperature of your simulation compare to your set point of 100.0 K?  
What does this reveal about Langevin thermostats?  Do you understand the meaning of the end portion of 
the fix langevin command that you added to in.task-04 (specifically, 100.0 1111111 zero yes)?

Notice how you added a Langevin thermostat using a fix langevin while still relying on fix nve. This does 
not mean that you are performing a microcanonical (NVE) simulation with a thermostat.  Recall that fix 
nve dictates how LAMMPS integrates the system’s equation of motion such that in the absence of 
additional commands (e.g., some other fixes) your simulation would be a microcanonical (NVE).  fix 
langevin achieves an constant temperature (isothermal) simulation by adding additional forces to the 
particles in your system that are not due to interactions between your system’s particles, and thus 
necessarily perturbs the system away from being a microcanonical simulation. However, fix langevin does
not change how the LAMMPS integrates the equations of motions.  

3.2.2 Thermostating -  Nosé-Hoover  
Another popular way to achieve isothermal simulations is by using a Nosé-Hoover thermostat. When used
in conjunction with constant volume, your simulation will be operating in the NVT (canonical) ensemble, 
assuming that you do not have additional commands that perturb the system from canonical sampling.   
The Nosé-Hoover  thermostat operates by adding additional degrees of freedom to a system, and altering 
the particle equations of motion to achieve a constant temperature simulation.  In turn, you can no longer 
use the equations of motions invoked by the fix nve command that you have been using so far.

fix    ensembleFix all nve
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You must replace the above command with another fix command that will invoke the NVT Nosé-Hoover 
equations of motion. 

fix    ensembleFixNVT all nvt temp ${temp} ${temp} 200.0

Task #5: Make another copy of in.task-03, and call it in.task-05.  Substitute the above nvt fix 
command into in.task-05, and rerun your simulation.  How does the system’s behavior change?  
How does the evolution of the system’s temperature compare to that of your Langevin simulation during 
the first few hundred timesteps?  Which thermostat seems to be a better choice for initially equilibrating 
your argon system?

3.2.3 Adding a barostat: Bersendsen Barostat

You have managed to control the temperature of your argon using two different thermostats. Now, you 
will control the system’s pressure using a Berendsen barostat.  A Berendsen barostat controls pressure by 
rescaling your simulation cell and the particles within it so that the pressure of your system relaxes toward
your specified set-point.  A Berendsen barostat does not change how the particles’ equations of motion 
are solved, rather it adjusts the positions of the particles every timestep.  Thus, as with the Langevin 
thermostat, you can use a fix nve command to tell LAMMPS how to integrate the equations of motion, 
and add a fix press/berendsen command to invoke Berendsen barostat.

Task #6: Make a copy of in.task-04 (your script from Task #4), and call it in.task-06.  You will
now try to pressurize your argon system at 1.0 atm. Complete the following fix press/berendsen 
command, and add it to in.task-06 after your fix langevin command.  Make sure that you understand 
what each option means. When you are starting your own simulations, you will probably have to change 
the fix press/berendsen options, including default settings that are not covered in this tutorial.

fix    XXX XXX press/berendsen iso XXX XXX 2000.0

Task #6 Follow-up: Look at your log.lammps file.  If you have properly added the Berendsen barostat 
command, the pressure of your argon system should rapidly increase at the start of your simulation from a
very large negative pressure to around 1.0 atm by the end of the simulation.  Why is the pressure 
oscillating?   How do the pressure oscillations compare to the system’s volume oscillations?

While the Beresend barostat is useful for rapidly equilibrating a system to a desired pressure, it does not 
provide correct NPT sampling (i.e., constant pressure, constant temperature sampling for a system 
containing a constant number of particles). To obtain proper NPT sampling, you should consider using a 
Nosé-Hoover  thermostat and a Nosé-Hoover barostat, which can be accessed using the fix npt command 
(instead of fix nve or fix nvt).  

Optional Task: To test your knowledge and gain more familiarity with LAMMPS, convert in.task-
06 to an NPT simulation that uses the fix npt command.  Using a Nosé-Hoover barostat is not necessarily 
a good way to equilibrate a system; however, knowing how to conduct a NPT simulation with fix npt will 
be useful when you want to perform equilibrium simulations.  Hint: As with the Berendsen barostat, you 
should probably using an isotropic barostat for your simulation. This was indicated by the iso option in 
the fix press/berendsen command.
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4 Simulating a Molecular System
So far, you have been simulating an atomic system. Now, you will start simulating a molecular system, 
specifically a single polyethylene chain in a solvent.  This section will focus on understanding and 
modifying the LAMMPS script entitled in.PE_Simulation.  in.PE_Simulation is located in
solvatedPE along with the other files needed for this Section (data.SolvatedChain and 
param.PE).  When running your revised versions of in.PE_Simulation, you will need to move or 
copy data.SolvatedChain and param.PE into the folder where you are running your updated 
script. 

4.1 Input/Output Revisited
Instead of generating the system’s initial configuration from scratch, you have been provided with a 
LAMMPS data file, data.SolvatedChain. A LAMMPS data file contains the positions of the 
particles in your system and necessary connectivity specifications (e.g., bonds and angles). data files can 
also contain particle velocities and force field information (e.g., Lennard-Jones ε and σ parameters, or 
bond stretching potentials) depending on how the data file was created.  You can read in a data file using 
the read_data command.  Below is the read_data command that appears in in.PE_Simulation 
under the “Loading System Info” comment block.  Recall that LAMMPS interprets script lines beginning 
with # as comments.

read_data    data.SolvatedChain

In this example, data.SolvatedChain does not contain any force field information; this information
is stored at the top of in.PE_Simulation and in param.SolvatedPE. At the top of in.PE_Simulation, 
lines 5 to 9 specify the characteristics of the forcefield that will be used for your polyethylene simulation. 
For example, this script using a different option for atom_style.

atom_style    full

Recall that for the argon system you had used the atomic option.  Now, that you are going to simulate a 
molecular system you will need to store more information than what atomic allows. The full option 
enables LAMMPS to store everything that you would need for most molecular simulations (e.g., bonds, 
angles, charges, etc.), so it is a safe option for many simulations.  In case of your polyethylene simulation,
you can use the full option even though polyethylene will be represented as a set of connected uncharged 
particles. LAMMPS does not care if you tell it to store and use charges, but then use a force field that 
does not include charges.   Lines 6-9 specify different aspects of how interaction energies, and thus 
forces, will be calculated in your polyethylene system.  Moreover, these lines tell LAMMPS what to 
expect in terms of force field inputs.  Take a moment to review these commands. 

You will notice that in.PE_Simulation lacks explicit force field input specification commands (e.g.,
commands like the pair_coeff  command in the scripts for your argon simulations); however, the input 
script does contain an include command.  

include    param.pe

An include command instructs LAMMPS to open the specified file (param.pe) and to read in that file 
as LAMMPS commands. As systems become increasingly large and complex, having all of the force field
specification commands in your input script becomes increasingly tedious and further reduces the 
readability of your LAMMPS scripts.  include commands enable you to place such commands in a 
separate file, and have your input scripts focus on the simulation execution details rather than data input.  
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For example, param.pe contains the force field input specification commands for your polyethylene 
simulation, and some related comments.

Just as LAMMPS offers many options for reading in information, it also has many output options.  
However, if you were to run in.PE_Simulation as is, LAMMPS would only output some 
thermodynamic information to the log.lammps file.

Task #7:  Make a copy of in.PE_Simulation called in.task-07.  You will now modify 
in.task-07 so that LAMMPS will produce a movie of the polyethylene chain in your system as your 
polyethylene simulation proceeds.  To do so, insert the following two commands into “Data Output 
Commands” section of in.task-07. Please note, that this dump style will as such only work with the 
Windows LAMMPS package, as it requires an external program, FFmpeg, which is not included in the 
virtual machine. 

group    chain type 1 2 
dump    chainMovie chain movie 10 chain.mpg type type box yes 0.01

The group command creates a selection called chain consisting of all particles within the simulation that 
are either type 1 or 2. In your polyethylene simulation and param.pe, particle types 1 and 2 correspond 
to the end and center particles composing the polyethylene chain while type 3 is the solvent. Thus, the 
above group command selects out the particles composing the polyethylene chain.  group commands 
enable you to perform a variety of group specific calculations including: only saving information for a 
specifc group of particles (as you are doing here), integrating equations of motion for a subset of your 
system (particularly, useful if you want to treat part of a system as rigid and unmoving), and perform 
analysis operations for a specific group of particles (see the next Section 4.3). 

The dump movie command instructs LAMMPS to create an mpeg movie called chain.mpg consisting of 
snapshots of every 10th configuration during the simulation (hence the option 10), but only for the 
particles composing the chain group. The particles will be sized and colored according to their type 
(hence the two type options), and the simulation box will be shown (box yes).

While jpeg images and movies are good for getting a sense of what is going on in your simulation, saving 
atomic coordinates enables you to subsequently analyze your trajectory, so it is generally more useful to 
save text-based instantaneous configurations using a dump command rather than just images or a movie. 
Further modify in.task-07 so that  LAMMPS will save an instantaneous configuration every 2000 
timesteps that contains each particle’s atomic index, molecular index, particle type, and its position 
(preferably, its unscaled, unwrapped position). You can do this by completing the following dump 
command, and adding it to the “Data Output Commands” section of in.task-07.  Look at the 
LAMMPS documentation to determine what must go at the end of the command where the ellipse is 
located.

dump   dumpConfig all custom 2000 config_*.lammpstrj …

When you are ready, run your polyethylene simulation.

Task #7 Follow-up:  Take a look at the movie that LAMMPS created. Note: You will need to watch it 
outside your virtual machine in Windows.  How does the conformation of the polyethylene change with 
time?  How does the movie illustrate periodic boundary conditions. If you are familiar with VMD or 
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OVITO, you can also install VMD or OVITO and try visualizing one of the lammpstrj files resulting from
your simulation.

4.2 Restarts
In the previous section, you started your polyethylene simulation using a configuration that you read in 
from a LAMMPS data file.  You can have LAMMPS prepare such data files by adding write_data 
commands to your LAMMPS script. For example, …
 

write_data data.PE 

Here, data.PE corresponds to the name of the file that LAMMPS will generate.  Note that write_data 
has several options about what force field information will be stored in your data file, and your choices 
here might change how you can subsequently use your data file.  It is a good idea to include at least one 
write_data command after your simulation’s run command in order to store your system’s final state. 
You can then use the resulting data file to start subsequent simulations.

Occasionally, your simulations will end prematurely, perhaps due to power outages or other problems.  In
these situations, you would probably like to just restart the simulation (pick up from where it left off), 
rather then start the simulation all over again.  While you could try using data files to get around this 
restart problem, LAMMPS offers a binary restart file format for simulation restarts.  You can instruct 
LAMMPS to write restart files using the restart command.

restart   ${restartFreq} restart.* 

Here, restartFreq is a variable that indicates how often LAMMPS will save restart files while restart.* is 
the filename template for your restart files. In restart.*, the * will be replace by the simulation’s timestep 
number each time LAMMPS writes a restart file.  Restart files can be read in using the read_restart 
command.  Only certain types of information are saved in restart files, and not everything in your initial 
LAMMPS script will be recovered when you restart your simulation from a restart file.  Consult the 
LAMMPS documentation for more information about reading, writing and using both data files and 
restart files. 

4.3 Computes 
One of the powerful features of LAMMPS is its ability to perform on-the-fly analysis.  Often, such 
analysis is done by using compute commands, which tell LAMMPS to perform specific computations for 
groups of particles.  In this section, you will focus on modifying your polyethylene simulation so that 
LAMMPS prints out the mean-squared displacement (MSD) of the center of mass of your polymer chain.

Task #8: To do this, you first need to select the polyethylene chain using the compute chunk/atom 
command.  The compute chunk/atom command assigns the atoms within a system to different groups 
according to, for example, type, position, molecule ID etc.  It is thus possible to select individual 
molecules within your system, and determine their individual properties as a function of time.

Make a copy of in.task-07, and call it in.task-08. Add the below compute atom/chunk command
to the “Data Output Commands” block. The molecule option will tell LAMMPS that you want it to create 
atom sets based on molecular indices. You have to decide what to replace XXX with.  Hint: all will not 
work, but you have already defined an appropriate group. 

compute chainChunk XXX chunk/atom molecule
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Below your compute chunk/atom line, add the following compute msd/chunk command, replacing XXX.

compute chainMSD XXX msd/chunk chainChunk

compute msd/chunk returns the MSD of each chunk that you pass to it (the chunk’s MSD along each axis 
and its total MSD), and stores this information in an array where the number of rows in the array 
corresponds to the number of chunks that you passed to the command. Here, you are passing it those 
chunks defined by the compute atom/chunk command labelled chainChunk, so there should be one chunk 
corresponding to your polyethylene chain.

Now, the above two commands will result in LAMMPS calculating the mean squared displacement of 
your polyethylene chain, but will not cause LAMMPS to print out a file with this information.  compute 
commands do not result in read/write operations.  You can use a fix ave/time command to save the chain’s
MSD information.

fix fixMSDPrint chain ave/time 1000 1 1000 c_chainMSD[4] & 
file chain-COM-MSD.dat mode vector 

This compute ave/time command illustrates several important LAMMPS concepts.  For clarity, let’s run 
through all of the options.  fixChainMSD is simply the ID for this compute ave/time command while 
chain specifies that the compute should operate on the particles in the chain group. The three numbers 
1000 1 1000 indicate in number of timesteps:

1. how frequently LAMMPS should sample the quantities used by the fix command (so the MSD in
this instance), 

2. how many of these samples LAMMPS should average (1 implies no averaging, so LAMMPS 
just prints instantaneous values), and 

3. how often LAMMPS should write the averaged quantities.  
Here, LAMMPS will print instantaneous quantities MSD values every 1000 timesteps. 

 
c_chainMSD[4] is specifying what quantity fix ave/time should average and write. c_ tells LAMMPS that
the quantity is the result of a compute command, and the string after it is the ID for compute command of 
interest (chainMSD). Recall that compute msd/chunk returns an array of MSD values. [4] instructs fix 
ave/time to use the fourth column of that array, which correspond to the total MSD of the chunks. 

Notice how the fix ave/time is so long, that it spills onto a second line. & tells LAMMPS that the 
command continues on the second line.

file tells LAMMPS that you want the fix ave/time command to save its results to a file, and the string after
file tells LAMMPS the name of the file it is supposed to create (chain-COM-MSD.dat, in this 
instance). 

Finally, vector mode tells LAMMPS that the fix ave/time command is operating on arrays, and not 
isolated scalar quanitites.

Add the fix ave/time command after your compute msd/chunk command, and run in.task-08.

Task #8 Follow-up: Look at the chain-COM-MSD.dat file that your polyethylene simulation 
produced. If everything worked correctly, the start of your file should look something like the following.
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# Time-averaged data for fix fixMSDPrint
# TimeStep Number-of-rows
# Row c_chainMSD[4]
0 1
1 0
1000 1
1 3.74613

Check that you understand how LAMMPS wrote out the MSD data for your polyethylene chain.  For 
example, on line 4, what does 0 and 1 represent? On line 5, what does 1 and 0 represent?

Optional Task:  Modify in.task-08 so that LAMMPS will print out the radius of gyration of the 
polyethylene chain every 1000 timesteps.  Check the LAMMPS documentation to find out how your can 
calculate the radius of gyration of a chunk.
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