
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

High-Fidelity Large-Scale Atomistic
Simulations of Materials using Big Computers
and Machine-Learning Interatomic Potentials

1

Aidan Thompson
Center for Comput ing Research ,
Sand i a Nat iona l Laborator ie s ,
A lbuquerque , New Mex ico

LAMMPS Workshop and Sympos ium,
August 10 -13 , 2021

SAND2020-2640 C

2
Machine-Learning Potentials:
Quantum Accuracy, Classical Scaling

• Input: ion positions
• Output: Electronic

structure, energy, forces,
stress

• Expensive
• O(N^3) scaling
• N ~ 100

• No electrons
• Interatomic potential
• O(N) scaling
• N ~ millions, billions
• Accuracy is a problem

Quantum Molecular
Dynamics

Classical Molecular DynamicsPhysics-inspired
Potential

E = ∑i Ei

Ei = ∑j f(rij)

3
Machine-Learning Potentials:
Quantum Accuracy, Classical Scaling

• Input: ion positions
• Output: Electronic

structure, energy, forces,
stress

• Expensive
• O(N^3) scaling
• N ~ 100

• No electrons
• Interatomic potential
• O(N) scaling
• N ~ millions, billions
• Accuracy is a problem

Quantum Molecular
Dynamics

Classical Molecular DynamicsPhysics-inspired
Potential

E = ∑i Ei

Ei = ∑j f(rij)

“SNAP: Spectral neighbor analysis method for automated generation of
quantum-accurate interatomic potentials” Thompson et al. J.Comp.Phys. 2015.

Machine-Learning Potential

4 SNAP Training Workflow (FitSNAP)

Model Form

Regression Method

• Energy of atom 𝑖 expressed as a basis expansion
over K components of the bispectrum (𝐵!")

• β vector fully describes a SNAP potential
• Decouples MD speed from training set size

DFT Training

Set of DescriptorsWeights

Regularization
Penalty

Hyperparameter
Optimization
(SOGA Genetic
Algorithm)

https://github.com/FitSNAP/FitSNAP

Figure 1: Schematic representation of ML descriptors encod-
ing the local environment of an atom. All atoms within the
radial cuto� (dashed line, X) are used to generate the descrip-
tors, represented as �ngerprints here. The atomic energy is
expressed as a linear or nonlinear function of the descrip-
tors, with parameters that are adjusted during training to
minimize error w.r.t. DFT data.

Cluster Expansion (ACE) family of descriptors each with a particu-
lar choice of radial basis.[28] A recent comparison of the leading
ML-IAP methodologies (including both NN and kernel-based meth-
ods) by an independent group showed that SNAP, GAP, and MTP
(i.e. all kernel-based methods) provided the best balance between
computational cost and accuracy[51].

The Spectral NeighborhoodAnalysis Potential (SNAP), pioneered
by our team, is one such Pareto optimal (accuracy versus compu-
tational cost) ML-IAP which uses bispectrum components of the
local neighbor density projected onto a basis of hyperspherical
harmonics in four dimensions as descriptors, pictorially captured
in Fig. 1. We use the quadratic form of SNAP for carbon, in which
the atomic energy ⇢8(#�% for an atom 8 is expressed as a sum of
the bispectrum components B8 for that atom (see Section 5) and
quadratic products of these descriptors, weighted by regression
coe�cients

⇢8(#�% (r
#
) = # · B8 +

1
2
B8 · " · B8 (1)

where the symmetric matrix " and the vector # are constant linear
coe�cients whose values are trained to reproduce energies and
forces obtained from DFT training structures. Similarly, the forces
on each atom : are expressed in terms of the derivative of atomic
energies with respect to the position of atom : , where # is the total
number of atoms in the structure

F:(#�% = � r:

#’
8=1

⇢8(#�% = �

#’
8=1

⇣
+ B8 · "

⌘
·
mB8

mr:
(2)

Training of the SNAP ML-IAP for carbon was performed iter-
atively utilizing the DAKOTA optimization package[1], wherein
SNAP prediction errors were minimized with respect to DFT data.
The " and # coe�cients were determined by weighted linear re-
gression minimizing the SNAP predicted energies and atomic forces
relative to a database of DFT calculations. This resulted in a robust
IAP over an astounding pressure and temperature range (0-50Mbars
and 300-20,000 K), far exceeding the capability of any empirical
IAP.

The computational bottleneck in any MD simulation is the evalu-
ation of the forces. In the case of SNAP (Eq. 2), this cost is dominated
by the evaluation of the bispectrum components B8 for each atom,
as well as the associated derivatives w.r.t. the positions of neighbor
atoms mB8/mr: . In comparison to empirical IAP, nearly all ML-IAP
are more computationally expensive given the complexity in the
descriptor de�nitions, thus total atom counts and simulation times
are sacri�ced for the improved accuracy.

In previous work, we have demonstrated that kernel-based meth-
ods such as SNAP can uniquely take advantage of accelerator de-
vices by exposingmultiple levels of parallelism in the computational
kernel that evaluates the gradients of descriptors needed for the
MD force calculation. Trott et al. developed an early CUDA imple-
mentation of SNAP that achieved good computational e�ciency
on the NVIDIA K20x GPU. That work also demonstrated the ex-
cellent scalability of machine-learning potentials, allowing an MD
simulation to run on all of the Titan machine (18,688 GPUs) with
only 13 atoms/GPU.[45]

For comparison with other state of the art ML-IAP, in addition
to the FLOP rate, a universal normalized metric for MD simulation
throughput must be used. Namely, the performance of an MD simu-
lation consisting of #0C><B simulated using #=>34B and completing
#BC4?B within)B8< seconds is

#0C><B

106
#BC4?B

#=>34B ⇥)B8<
(3)

and is reported in units of Matom-steps/node-s herein. Having both
of these metrics, one for computational intensity and the other
for simulation performance, is important when comparing MD
simulations across various system sizes, hardware types, varied
number of nodes, simulation time and disparate IAPs used.

Recently DeepMD [20], a NN based ML-IAP, reported 8.1 · 10�10
s/atom-step for 100 timesteps with ⇠127 million Cu atom on 4560
Summit nodes. The equivalent MD performance as de�ned in Eq. 3
is 0.27 Matom-steps/node-s, which currently stands as the best
computational performance of any NNML-IAP at this scale [26]. By
comparison, our SNAP MD simulations reported in this paper have
achieved an MD performance of 5.92 Matom-steps/node-s while
simulating ⇠20 billion carbon atoms on the full Summit machine
(4650 nodes),which is 22x higher than theMDperformance of
DeepMD. The next section details the algorithmic improvements
that provided this performance gain.

5 INNOVATIONS REALIZED
Here we present the algorithmic and architecture speci�c optimiza-
tions that were made to SNAP in order to improve the throughput
on newer generation CPUs and GPUs. The SNAP energy and forces
are expressed as a basis expansion in bispectrum components (Eq. 1,
2) up to an upper limit in the angular momentum quantum number
� , de�ned below. Exploitation of a symmetry relation in the bis-
pectrum components reduced the computational complexity from
O(� 7) to O(� 5), giving an order of magnitude speedup on CPUs
[43]. This version of SNAP was ported to run on GPUs in LAMMPS
and is the version that we took as our starting point. [21].

As shown in the equations below, SNAP consists of many irregu-
larly structured, deeply nested loops with small, varying loop sizes,

3

increasing the challenges of optimization compared to regularly
structured linear algebra kernels (e.g. GEMM).

The evaluation of the SNAP potential and derived forces follows
the following pattern:

• ComputeUi: Evaluate the local neighbor density of an atom
8 in terms of a four-dimensional hyperspherical harmonic
basis,

U9 =
’

A8:<'

52 (A8:)u9 (0,1), (4)

where u9 areWigner U-matrices, each rank 2 9+1, and 0,1 are
the Cayley-Klein parameters, mappings of r8: to the 3-sphere,
and the index 9 takes half-integer values {0, 12 , 1,

3
2 , . . .}. The

u9 are e�ciently calculated by a recursion relation

u9 = F (u9� 1
2
), (5)

where F is a linear operator mapping two adjacent elements
of u9�1/2 to each element of u9 . 52 (A8:) is a smooth cuto�
function.

• ComputeBi and ComputeZi: The U9 are not basis invariant
and thus not useful as descriptors. We form real, scalar, basis-
invariant triple-products [2]:

⌫ 91 92 9 = U91 ⌦
9
91 92

U92 : U
⇤
9 (6)

= Z9
91 92

: U⇤
9 . (7)

The symbol ⌦ 9
91 92

indicates a Clebsch-Gordan product of ma-
trices, an O(94) operation. The : corresponds to an element-
wise scalar product of two matrices of equal rank, an O(92)
operation. The vector of descriptors B8 for atom 8 introduced
in Eq. 1 is a �attened list of elements ⌫ 91 92 9 restricted to
0 2 92 2 91 2 9 2� , so that the number of unique bis-
pectrum components scales as O(� 3). In the current work,
2� is set to 8, yielding a descriptor vector B8 of length 55.

• ComputeDuidrj and ComputeDeidrj: Compute derivatives
of the descriptors,

m⌫ 91 92 9

mr:
= Z9

91 92
:
mU⇤

9

mr:
+ Z91

9 92
:
mU⇤

91

mr:
+ Z92

9 91
:
mU⇤

92

mr:
, (8)

and accumulate into the force via Eq. 2.
This section describes the implementation and optimizations of

the quadratic SNAP ML-IAP given above that uses the Kokkos
performance-portability library [13]. Kokkos provides a frame-
work for decomposing work into discrete, independent pieces that
are written in C++ and then mapped onto backend languages
(such as CUDA) and dispatched in parallel, hiding the architecture-
speci�c details of executing work. Kokkos provides constructs to
exploit hierarchical parallelism. The most relevant here are multi-
dimensional, tiled launches, which conceptually map onto cache
blocking on the CPU and multi-dimensional thread and block in-
dices on the GPU. Of special note, Kokkos provides an abstraction of
“scratchpad memory”, which conceptually maps onto small memory
segments on the CPU which stay resident in cache, and maps onto
shared memory on the GPU.

The �rst set of optimizations below describe the systematic ex-
traction of hierarchies of parallelism in the SNAP ML-IAP. These
are complimented by optimizations to memory layouts enabled by

the Kokkos performance portable framework “view” abstraction for
multi-dimensional data structures. The latter set of optimizations
describe where the ideals of performance portability break down,
and we diverge the implementations for the CPU and GPU. This is
necessary because GPUs, compared to CPUs, require a far higher
arithmetic intensity, or ratio of FLOPS to memory transactions, to
take full advantage of hardware accelerators.

The implementation of the SNAP potential described here is
publicly available with the LAMMPS molecular dynamics package
[31]. The work we describe below was been performed over the
past ⇠3 years, starting with the baseline GPU implementation [21]
in LAMMPS.

5.1 Kernel Fission and Reduction of
Computational Complexity

Despite taking advantage of the Kokkos features of hierarchical
parallelism and scratchpad memory, the initial implementation
of the SNAP potential had lackluster performance on GPUs. The
original implementation mirrored the baseline CPU version by
using one large, fused kernel, which caused high register usage,
throttling occupancy.

Our �rst change was kernel �ssion, splitting the large kernel
into multiple small kernels. This reduced register pressure across
separate kernels, but greatly increased memory usage since inter-
mediate quantities for all pairs of atom-neighbors needed to be
explicitly stored between kernel launches.

These memory overheads became prohibitive and motivated
several important optimizations. First, it motivated index �attening
in both U9 and Z9

91 92
, replacing jagged arrays with compressed

indices. This innovation reduced the memory for U9 by a factor of
1/3 and considerably more for Z9

91 92
.

More importantly, this motivated the development of the adjoint
refactorization, which combines Eqs. 1 and 8 to de�ne a new quantity
Y,

Y9 =
’
91 92

(# + B · ")
9
91 92

Z9
91 92

. (9)

This adjoint refactorization simpli�es the �nal force evaluation
to

F:(#�% = �

#’
8=1

�’
9=0

Y9 :
mU⇤

9

mr:
. (10)

Y can be identi�ed as the adjoint of dB with respect to dU. This
reduces the computational complexity from O(� 5) to O(� 3)
by removing a factor of O(� 2) computation from the evalua-
tion of Eq. 8 compared to Eq. 10. This reformulation also enables
a factor of 3 reduction of �ops due to a 9 $ 91 $ 92 symmetry
in Z9

91 92
. As part of the development of this method, we optimized

away a factor of O(#=486⌘) storage in Z. The calculation of Y was
implemented in a new kernel ComputeYi.

5.2 Extraction of Parallelism and Data Layout
Optimizations

The acts of kernel �ssion and implementing the adjoint refactoriza-
tion simpli�ed identifying the parallelism available in each kernel.

4

increasing the challenges of optimization compared to regularly
structured linear algebra kernels (e.g. GEMM).

The evaluation of the SNAP potential and derived forces follows
the following pattern:

• ComputeUi: Evaluate the local neighbor density of an atom
8 in terms of a four-dimensional hyperspherical harmonic
basis,

U9 =
’

A8:<'

52 (A8:)u9 (0,1), (4)

where u9 areWigner U-matrices, each rank 2 9+1, and 0,1 are
the Cayley-Klein parameters, mappings of r8: to the 3-sphere,
and the index 9 takes half-integer values {0, 12 , 1,

3
2 , . . .}. The

u9 are e�ciently calculated by a recursion relation

u9 = F (u9� 1
2
), (5)

where F is a linear operator mapping two adjacent elements
of u9�1/2 to each element of u9 . 52 (A8:) is a smooth cuto�
function.

• ComputeBi and ComputeZi: The U9 are not basis invariant
and thus not useful as descriptors. We form real, scalar, basis-
invariant triple-products [2]:

⌫ 91 92 9 = U91 ⌦
9
91 92

U92 : U
⇤
9 (6)

= Z9
91 92

: U⇤
9 . (7)

The symbol ⌦ 9
91 92

indicates a Clebsch-Gordan product of ma-
trices, an O(94) operation. The : corresponds to an element-
wise scalar product of two matrices of equal rank, an O(92)
operation. The vector of descriptors B8 for atom 8 introduced
in Eq. 1 is a �attened list of elements ⌫ 91 92 9 restricted to
0 2 92 2 91 2 9 2� , so that the number of unique bis-
pectrum components scales as O(� 3). In the current work,
2� is set to 8, yielding a descriptor vector B8 of length 55.

• ComputeDuidrj and ComputeDeidrj: Compute derivatives
of the descriptors,

m⌫ 91 92 9

mr:
= Z9

91 92
:
mU⇤

9

mr:
+ Z91

9 92
:
mU⇤

91

mr:
+ Z92

9 91
:
mU⇤

92

mr:
, (8)

and accumulate into the force via Eq. 2.
This section describes the implementation and optimizations of

the quadratic SNAP ML-IAP given above that uses the Kokkos
performance-portability library [13]. Kokkos provides a frame-
work for decomposing work into discrete, independent pieces that
are written in C++ and then mapped onto backend languages
(such as CUDA) and dispatched in parallel, hiding the architecture-
speci�c details of executing work. Kokkos provides constructs to
exploit hierarchical parallelism. The most relevant here are multi-
dimensional, tiled launches, which conceptually map onto cache
blocking on the CPU and multi-dimensional thread and block in-
dices on the GPU. Of special note, Kokkos provides an abstraction of
“scratchpad memory”, which conceptually maps onto small memory
segments on the CPU which stay resident in cache, and maps onto
shared memory on the GPU.

The �rst set of optimizations below describe the systematic ex-
traction of hierarchies of parallelism in the SNAP ML-IAP. These
are complimented by optimizations to memory layouts enabled by

the Kokkos performance portable framework “view” abstraction for
multi-dimensional data structures. The latter set of optimizations
describe where the ideals of performance portability break down,
and we diverge the implementations for the CPU and GPU. This is
necessary because GPUs, compared to CPUs, require a far higher
arithmetic intensity, or ratio of FLOPS to memory transactions, to
take full advantage of hardware accelerators.

The implementation of the SNAP potential described here is
publicly available with the LAMMPS molecular dynamics package
[31]. The work we describe below was been performed over the
past ⇠3 years, starting with the baseline GPU implementation [21]
in LAMMPS.

5.1 Kernel Fission and Reduction of
Computational Complexity

Despite taking advantage of the Kokkos features of hierarchical
parallelism and scratchpad memory, the initial implementation
of the SNAP potential had lackluster performance on GPUs. The
original implementation mirrored the baseline CPU version by
using one large, fused kernel, which caused high register usage,
throttling occupancy.

Our �rst change was kernel �ssion, splitting the large kernel
into multiple small kernels. This reduced register pressure across
separate kernels, but greatly increased memory usage since inter-
mediate quantities for all pairs of atom-neighbors needed to be
explicitly stored between kernel launches.

These memory overheads became prohibitive and motivated
several important optimizations. First, it motivated index �attening
in both U9 and Z9

91 92
, replacing jagged arrays with compressed

indices. This innovation reduced the memory for U9 by a factor of
1/3 and considerably more for Z9

91 92
.

More importantly, this motivated the development of the adjoint
refactorization, which combines Eqs. 1 and 8 to de�ne a new quantity
Y,

Y9 =
’
91 92

(# + B · ")
9
91 92

Z9
91 92

. (9)

This adjoint refactorization simpli�es the �nal force evaluation
to

F:(#�% = �

#’
8=1

�’
9=0

Y9 :
mU⇤

9

mr:
. (10)

Y can be identi�ed as the adjoint of dB with respect to dU. This
reduces the computational complexity from O(� 5) to O(� 3)
by removing a factor of O(� 2) computation from the evalua-
tion of Eq. 8 compared to Eq. 10. This reformulation also enables
a factor of 3 reduction of �ops due to a 9 $ 91 $ 92 symmetry
in Z9

91 92
. As part of the development of this method, we optimized

away a factor of O(#=486⌘) storage in Z. The calculation of Y was
implemented in a new kernel ComputeYi.

5.2 Extraction of Parallelism and Data Layout
Optimizations

The acts of kernel �ssion and implementing the adjoint refactoriza-
tion simpli�ed identifying the parallelism available in each kernel.

4

SNAP

NNP

Molybdenum

“Performance and Cost Assessment of Machine Learning
Interatomic Potentials” Zuo, Chen, Li, Deng, Chen, Behler, Csányi,
Shapeev, Thompson, Wood, and Ong. J.Phys.Chem A. 2020.

SNAP: Good tradeoff on accuracy and performance5

• SNAP is competitive with the best approaches
world wide

• In a 2020 independent study of 4 leading
approaches (left), quadratic SNAP achieved good
cost/accuracy balance on all 6 elements

• Also showed good stability in extrapolation

GAPMTP

World Map of Leading ML Potentials

NNP Neural
Network
Potential (Behler,
U. Gottingen)

GAP Gaussian
Process (Csanyi,
U. Cambridge)

MTP
Moment
Tensor
(Shapeev,
Skoltech)

SNAP
(Thompson,
Sandia)

ANI
(Smith,
LANL)ChIMES

(Goldman,
LLNL)

DeepMD
(Weinan E,
Princeton U.)

6 SNAP Applications

Refractory Alloys Compound
Semiconductors

Phase Change Kinetics

Fusion Energy

Magnetic Materials

0.4 0.6 0.8 1
Pos (µm)

0

200

400

St
re

ss
 (G

Pa
)

σzzτxzτyz

Extreme Conditions

0.4 0.6 0.8 1
Pos (µm)

0

200

400

St
re

ss
 (G

Pa
)

σzzτxzτyz

SNAP GPU Performance on Summit
7

Summit Strong-Scaling• Single-GPU performance improved by 25x-50x since 2018
• Excellent strong scaling on Summit
• 30ns/day for typical problem sizes

1 2 4 8 16 32 64 128 256 512 1024
Summit Nodes

0.1

1

10

100
ns

 /
da

y

SNAP 4M atoms
EAM 4M atoms

EAM W
80ns/day SNAP W

30 ns/day

2-3x

Summit Strong Scaling 4M atoms

• SNAP for exoplanetary carbon
• Entire Summit machine (27,900 GPUs)
• Scaled up 2 Billion atoms (0.1 x 0.1 x 1 micron3)
• Achieved 47 PFLOPS, 23% of peak
• 5.9 Matom-steps/node-s - 22x improvement on DeepMD

2 Billion atoms

25 Million atoms

Single GPU 2k atoms

8 Taxonomy of MLIAP Atomic Descriptors
• Requirements

q Invariances: Rotation,
Translation, Permutation

q Equivariant forces
q Smooth Differentiable
q Extensible

Basis expansions
• Steinhardt parameters SO(3)
• SOAP SO(3)
• SNAP SO(4)
• Power Spectrum (3-body)
• Bispectrum (4-body)
• Moment tensors (N-body)
• ACE (N-body)

Diverse Descriptors
• 2body: 𝑑!" = 𝐫! −𝐫"
• 3body: cos 𝜃!"# =)𝐫!" .)𝐫!#
• Behler-Parrinello
• ChIMES Polynomials
• Tensor invariants (Ramprasad)
• DeepPot Tensors
• SE(3)-equivariant tensors
• Graph methods
• Local coordinate frame

Bartok, Kondor,
Csanyi, "On
Representing
Chemical
Environments,"
Phys.Rev.B, 2013

Drautz, "Atomic
cluster expansion
for accurate and
transferable
interatomic
potentials,"
Phys.Rev.B, 2019

MLIAPs Available in LAMMPS
Native LAMMPS

ML-SNAP

LAMMPS Packages

ML-HDNNP: Singraber, N2P2, Behler-
Parrinello Descriptors, ANN Potentials

ML-PACE: Lysogorskiy, Drautz, Atomic
Cluster Expansion

ML-QUIP: Bartok, Csanyi, GAP Potentials,
SOAP Descriptors

ML-RANN: Dickel, NN potential with fast
fingerprints

KIM: Tadmor, many ML potentials: DUNN,
hNN, PANNA

External LAMMPS Packages

USER-DEEPMD: Zhang, E, Car, Deep Network
Potentials

USER-MLIP: Seko, Machine Learning Potential
Repository

USER-MLIP: Shapeev, Moment Tensor Potentials

USER-PINN: Mishin, Physically informed neural
network potential

USER-ANI: Barros, Smith, Lubbers, ANI ANN
Potentials

USER-AENET: Artrith, Behler-Parrinello
Descriptors, ANN Potentials

:

:

How are MLIAPs Implemented in LAMMPS?

Background
Many groups using the same infrastructure (LAMMPS, PyTorch,
TensorFlow, SciKitLearn)
Many unique ideas are in descriptors (e.g. ACE, DeepPot)

Typical Approach
Create stand-alone code
Later, interface to LAMMPS

Disdavantages
Requires substantial knowledge of LAMMPS structure
Code is hard to understand/modify
Incomplete LAMMPS compatibility
Descriptors and models are hardwired together

10

Prototype Completed

ML-IAP package released in public LAMMPS
Defines commands for both running and training ML potentials

All variants of SNAP models and descriptors are implemented

Negligible performance overhead

Allows mix-and-matching of Models and Descriptors

inputs to a model for the atomic energy that is trained on QM data for total
potential energy, forces, and stress tensor components for a large number of
atomic configurations. While all MLIAPs share these common features, they
di↵er greatly in two aspects: descriptors and models.

• NNP Behler/Parrinello, The first successful MLIAP was the model for
silicon developed by Behler and Parrinello. It combined

• NNP Singraber/Dellago

• GAP

• ACE

• MTP

• DeepPot SE, Deep MDKit [4], https://github.com/deepmodeling/deepmd-
kit

• SNAP

We will now consider a much wider range of choices, including non-linear
manybody pooling of descriptors, as well as deep learning artificial neural
networks. In order to decouple the choice of energy model from the choice of
descriptors, we will develop a new package in LAMMPS to allow arbitrary
energy models to be combined with arbitrary descriptors. This is in contrast
to most MLIAP implementations, including that of SNAP in LAMMPS,
where the calculation of the descriptors and the calculation of the forces are
lumped together in a single function call. This makes it di�cult to replace
either the descriptor or the energy model without modifying a lot of low-level
code.

We propose to define a new MLIAP interface in LAMMPS that separates
the descriptor and force model in the following way:

descs = Desc.getDescs(atoms)

modelGrads = Model.getGrads(descs)

forces = Desc.getForces(modelGrads)

Listing 1: Decoupled MLIAP interface for simulation

48

The same approach can be also used to define a LAMMPS interface for
training MLIAP models. The main challenge is to e�ciently calculate the
gradient of force predictions w.r.t. model parameters. This is true regardless
of whether the energy model is linear as in the case of SNAP, or a complex
nonlinear function. For example, in the case of an ANN using stochastic
gradient descent optimization, computing the gradient of the loss function
w.r.t. network weights requires first calculating the gradient of each atomic
force component w.r.t. each descriptor and then passing this information
to the ANN software. This information can be e�ciently calculated within
LAMMPS, using SNAP or some other descriptor and then passed to an
arbitrary energy model. The energy model will compute the gradient of the
loss function and update its parameters accordingly. This is described in the
following pseudocode:

descs = Desc.getDescs(atoms)

gradGrads = Model.getGradGrads(descs)

forceGrads = Desc.getForceGrads(gradGrads)

Model.update(forceGrads)

Listing 2: Decoupled MLIAP interface for training

The e�cacy of this approach depends on the size of the Ndesc ⇥ Nparam

matrix modelGradGrads, the double gradient of the potential energy w.r.t.
both descriptors and model parameters. For a general non-linear atomic en-
ergy model with Nparam model parameters and Ndesc descriptors, this can
be prohibitively large to evaluate and store. However, for many important
models, most entries will be zero, and the cost of calculating and storing
modelGradGrads is negligible. For a linear model, the matrix is simply the
identity matrix of rank Ndesc, while for a quadratic model, the number of non-
zero entries scales as O(N2

desc). Conversely, in cases where modelGradGrads
is large, the following alternative algorithm for obtaining the force gradient
may be more e�cient:

descGrads = Desc.getDescGrads ()

forceGrads = Model.getForceGrads(descGrads)

Model.update(forceGrads)

Listing 3: Decoupled MLIAP interface for training, alternate

The e�cacy of this approach depends on the size of descGrads, the derivative
of each descriptor w.r.t. the position of each neighbor atom, which scales as
O(3Nneighs ⇥ Ndesc), where Nneighs is the average number of neighbors per

49

The same approach can be also used to define a LAMMPS interface for
training MLIAP models. The main challenge is to e�ciently calculate the
gradient of force predictions w.r.t. model parameters. This is true regardless
of whether the energy model is linear as in the case of SNAP, or a complex
nonlinear function. For example, in the case of an ANN using stochastic
gradient descent optimization, computing the gradient of the loss function
w.r.t. network weights requires first calculating the gradient of each atomic
force component w.r.t. each descriptor and then passing this information
to the ANN software. This information can be e�ciently calculated within
LAMMPS, using SNAP or some other descriptor and then passed to an
arbitrary energy model. The energy model will compute the gradient of the
loss function and update its parameters accordingly. This is described in the
following pseudocode:

descs = Desc.getDescs(atoms)

gradGrads = Model.getGradGrads(descs)

forceGrads = Desc.getForceGrads(gradGrads)

Model.update(forceGrads)

Listing 2: Decoupled MLIAP interface for training

The e�cacy of this approach depends on the size of the Ndesc ⇥ Nparam

matrix modelGradGrads, the double gradient of the potential energy w.r.t.
both descriptors and model parameters. For a general non-linear atomic en-
ergy model with Nparam model parameters and Ndesc descriptors, this can
be prohibitively large to evaluate and store. However, for many important
models, most entries will be zero, and the cost of calculating and storing
modelGradGrads is negligible. For a linear model, the matrix is simply the
identity matrix of rank Ndesc, while for a quadratic model, the number of non-
zero entries scales as O(N2

desc). Conversely, in cases where modelGradGrads
is large, the following alternative algorithm for obtaining the force gradient
may be more e�cient:

descGrads = Desc.getDescGrads ()

forceGrads = Model.getForceGrads(descGrads)

Model.update(forceGrads)

Listing 3: Decoupled MLIAP interface for training, alternate

The e�cacy of this approach depends on the size of descGrads, the derivative
of each descriptor w.r.t. the position of each neighbor atom, which scales as
O(3Nneighs ⇥ Ndesc), where Nneighs is the average number of neighbors per

49

MLIAP Force (Running Simulation)

MLIAP Force Gradient (Training Model)

Algorithm 2: NNEIGHS x NDESCRIPTORS

Algorithm 1: NPARAMS x NDESCRIPTORS

https://lammps.sandia.gov/doc/pair_mliap.html

11

ModelDescriptor

Inputs
Atoms
Elements
Neighbors

Outputs
Energy
Force
Stress

Data

LAMMPS ML-IAP Package

https://lammps.sandia.gov/doc/pair_mliap.html

12 LAMMPS ML-IAP Package
• Provides a simple and general interface for ML potentials in LAMMPS
• Allows mix-and-matching of different Descriptors and Models
• Can be used for both running simulations and training
• Supports all SNAP Descriptor/Model variants
• Python and PyTorch models
• ANN Model native (Pedro Santos Flórez, Qiang Zhu, UNLV)
• SO(3) Descriptors (Qiang Zhu, UNLV)
• PANACEA: A model for information entropy in Descriptor space (Josh

Brown, Danny Perez, LANL)

LAMMPS ML-IAP Package: PyTorch13

• Can define a SNAP model in four different ways:
SNAP
pair_style snap
pair_coeff * * Ta06A.snapcoeff Ta06A.snapparam Ta

pair_style mliap &
descriptor sna Ta06A.mliap.descriptor &
model linear Ta06A.mliap.model
pair_coeff * * mliap Ta

pair_style mliap &
descriptor sna Ta06A.mliap.descriptor &
model mliappy Ta06A.mliap.pytorch.model.pkl
pair_coeff * * mliap Ta

lmp.commands_string(setup_commands) # mliappy model left undefined
lmp.mliappy.load_model(pickle.load(open('Ta06A.mliap.pytorch.model.pkl')))

MLIAP Linear model

MLIAP PyTorch model

MLIAP PyTorch model from Python

Atomic Cluster Expansion (ACE) 2,3,...,N-
body irreducible scalar invariants
Drautz, Phys.Rev.B, 2019
Willatt, Musil, Ceriotti, J.Chem.Phys. 2019
Seko, Togo, Tanaka, Phys.Rev.B 99, 2019

• Local environment expanded in atomic basis
• Generates very general set of 2, 3, ...N-body irreducible scalar

invariants
• Superset of many previous descriptors (SNAP, GAP, MTP, BP)
• For example, SNAP bispectrum components can be expressed in

this form

New Descriptor: Atomic Cluster Expansion (ACE)

14

5

the form of an ACE. Furthermore, as the ACE provides
a basis, while the contraction of the cartesian tensors for
the MTPs is to some extent arbitrary, the re-expansion of
the MTPs in the form of an ACE may be used to ensure
a complete set of basis functions for the moments tensor
potentials.
Furthermore, the SOAP descriptor15 is parameterized

using hyperspherical harmonics for the Spectral Neighbor
Analysis method Potential (SNAP)13. By decomposing
the hypershpherical harmonics into a product of an effec-
tive radial contribution and a spherical harmonics, one
can rewrite the SNAP exactly in the form of an ACE.
The details are given in App. C.

V. MULTI-COMPONENT MATERIALS

Before adding magnetic or charge degrees of freedom,
I discuss the expansion of scalar, vectorial or tensorial
properties in multi-component materials. I assume that
the state of a multi-component material is completely
characterized by the atomic positions and their chemical
species, such that

σj = (µj , rrrji) . (30)

Next I choose basis functions that are localized on the
atoms and are written as a product of chemical, radial
and angular contributions

φφφiµiκnl(σj) = eeeκ(µj)R
µjµi

nl (rji)YYY l(r̂rrji) . (31)

The basis functions are vectors with elements
{φφφiµiκnl(σj)}m, m = −l, . . . , l. Different from Ref. 1,
where the chemical space is expanded in Chebyshev
polynomials, I simply use an explicitly orthogonal basis.
The M different chemical species are identified by M
orthogonal unit vectors in an M -dimensional space,

eeeκ(µ) = δκµ , (32)

such that Eqs.(6,7) are given by

〈eeeκ1
(µ)|eeeκ2

(µ)〉 = δκ1κ2
, (33)

∑

κ

eeeκ(µ1)eeeκ(µ2) = δµ1µ2
. (34)

This has the advantage that chemical species may be
added or removed to the system without modifying basis
functions of other species and therefore the chemistry
dependent expansion coefficients are directly transferable
between different materials systems. One may argue that
this contradicts the spirit of the original cluster expansion
that requires φ0 = 1. This may easily be taken into
account by introducing explicitly a further species, the
’vacuum species’ for which φ0 = 1 and which has no
properties associated to it.
The radial functions R

µjµi

nl (rji) depend on the distance
rji between the atoms of chemical species µi and µj , while

n and l are further indices and l makes reference to the ir-
reducible representation of the rotation group. Evidently,
the radial functions are invariant with respect to rotation.
The angular functions YYY l(r̂rr) depend only on the bond

direction r̂rr. They form a complete basis for the irre-
ducible representation l of the rotation group, which
means that Y m

l (r̂rr) with m = −l,−l + 1, . . . , l − 1, l is
a vector of 2l + 1 linearly independent basis functions.
Typically the angular functions YYY l are taken as spheri-
cal harmonics, but other, related representations are also
possible.
The energy or other configuration dependent quanti-

ties are obtained by inserting the basis functions into
Eq.(14). The atomic base Eq.(17) reads

AAAiµnl =
∑

j

δµµj
R

µjµi

nl (rji)YYY l(r̂rrji) , (35)

which means that in the sum over neigbors j only atoms
of species µ are considered, and

A(0)
iµ = δµµi

. (36)

The expansion of a configuration dependent quantity GGGi

on atom i with species µi that transforms according to
the irreducible representation LR of the rotation group
is then written as

GGGi =GGG(σσσ) =
∑

µn

c(1)µiµnLR
AAAiµnLR

+
′
∑

µnlµnlµnl

c(2)µiµnlµnlµnlLR

(

lllLR
)

2
AAAiµ1n1l1AAAiµ2n2l2

+
′
∑

µnlLµnlLµnlL

c(3)µiµnlLµnlLµnlLLR

(

lll
LLL

LR

)

3

×AAAiµ1n1l1AAAiµ2n2l2AAAiµ3n3l3

+
′
∑

µnlLµnlLµnlL

c(4)µiµnlLµnlLµnlLLR

(

lll
LLL

LR

)

4

×AAAiµ1n1l1AAAiµ2n2l2AAAiµ3n3l3AAAiµ4n4l4

+ (37)

The sums are taken over lexicographically ordered com-
binations µnlµnlµnl and the intermediate couplings LLL which
are necessary for a complete set of basis functions. The
summation over possible combinations mmm is implied.
One may define the irreducible set of basis functions

of the atomic cluster expansion

BBB(N)
µiµnlLµnlLµnlLLR

=

(

lll
LLL

LR

)

N

N
∏

k=1

AAAiµknklk , (38)

and rewrite the atomic cluster expansion as

GGGi =
∑

N=0

′
∑

µnlLµnlLµnlL

c(N)
µiµnlLµnlLµnlLLR

BBB(N)
µiµnlLµnlLµnlLLR

. (39)

Radial basis Angular basis

2

The body order of the products is given by r+1 and the
species of atom i by µi. The vectors µµµ, nnn, lll and mmm have
length r and contain atomic species, radial function in-
dices, and spherical harmonics indices, respectively. Non-

zero values of c̃(p,r)µiµnlmµnlmµnlm are provided as input by the user.
The indices µnlmµnlmµnlm are lexicographically ordered.

The expansion coe�cients c̃(p,r)µiµnlmµnlmµnlm ensure invariance of
the energy under rotation and inversion. They may be
represented as a sum over products of expansion coe�-

cients c
(p,r)
µiµnlLµnlLµnlL in an explicitly rotationally and inversion

invariant basis and generalized Clebsch-Gordan coe�-
cients, where LLL indicates the couplings in the generalized
Clebsch-Gordan coe�cients7.

The atomic base is computed as

Aiµnlm =
X

j

�µµj�µjµinlm(rrrji) , (7)

and

�µjµinlm = R
µjµi

nl (rji)Ylm(r̂rrji) , (8)

with spherical harmonics Ylm(r̂rrji) and radial functions
R

µjµi

nl (rji) and di↵erence vectors given as rrrji = rrrj � rrri,
rji = |rrrji| and r̂rrji = rrrji/rji.

III. EXPRESSION FOR THE FORCES

The forces may be obtained from using an adjoint
method1,7

rkEi =
X

µnlm

!iµnlmrkAiµnlm , (9)

with

!iµnlm =
X

r=1

X

µnlmµnlmµnlm

⇥(r)
iµnlmµnlmµnlm

rX

t=1

dB
(r)
iµnlmµnlmµnlmt , (10)

and where

dB
(r)
iµnlmµnlmµnlmt = �µµt�nnt�llt�mmt

⇥

t�1Y

k=1

Ainklkmk

!
rY

k=t+1

Ainklkmk

!
, (11)

and

⇥(r)
iµnlmµnlmµnlm =

X

p

@F

@⇢
(p)
i

c̃
(p,r)
µiµnlmµnlmµnlm . (12)

For the gradients of the atomic base one has

rkAiµnlm = �µµkrk�µkµinlm(rrrki)

�
X

j

�µµjrj�µjµinlm(rrrji)�ik , (13)

where we use

�µjµinlm(rrrji) = �µiµjnlm(rrrji) , (14)

ri�µjµinlm(rrrji) = �rj�µiµjnlm(rrrji) . (15)

Then from

fffki =
X

nlm

!iµknlmrk�µkµilm(rrrki) , (16)

the force on atom k is written as

FFF k =
X

i

(fff ik � fffki) . (17)

IV. REQUIRED INPUT AND RESULTS

For running the ACE code the user needs to provide
the basis vectors µnlmµnlmµnlm for each required rank r and for
each density and the corresponding expansion coe�cients

c̃
(p,r)
µiµnlmµnlmµnlm. The user also needs to specify the radial basis

functions R
µjµi

nl .
We provide several examples for functions sEi =

F (⇢(1)i , . . . , ⇢
(P)
i) and the derivatives dF

d⇢(p) . For the imple-
mentation of other functions F we furthermore supply a
simple interface that users may easily adapt to their par-
ticular choice for F .
During the simulation the ACE code expects a neigh-

borlist for each atom i that contains information on the
vectors to neighboring atoms rrrji as well as the species of
the atom i and neighbors j, µi and µj , respectively.
The ACE code then computes the energy Ei and the

pairwise force components fff ij from which the atomic
forces are assembled. Further, pressure and stresses are
computed from the pairwise force components13.

V. WORKFLOW

A. Memory layout and assembly

After reading the input, the necessary memory is allo-
cated and variables are assembled into arrays. The arrays

Aiµnlm, B(r)
iµnlmµnlmµnlm, dB(r)

iµnlmµnlmµnlmt, ⇢
(p)
i and !iµnlm have atomic

index i, but they are always utilized for one atom only
and the index i is omitted.
For fast memory access and e�cient memory man-

agement multi-dimensional arrays are organized into
a contiguous memory layout. For example, the
spherical harmonics indices l and m are contracted
into a single index (lm) by consecutive enumeration,
(0, 0), (1,�1), (1, 0), (1, 1),

B. Force and energy evaluation

The energy and force for a given atom i are obtained
in five steps,

2

The body order of the products is given by r+1 and the
species of atom i by µi. The vectors µµµ, nnn, lll and mmm have
length r and contain atomic species, radial function in-
dices, and spherical harmonics indices, respectively. Non-

zero values of c̃(p,r)µiµnlmµnlmµnlm are provided as input by the user.
The indices µnlmµnlmµnlm are lexicographically ordered.

The expansion coe�cients c̃(p,r)µiµnlmµnlmµnlm ensure invariance of
the energy under rotation and inversion. They may be
represented as a sum over products of expansion coe�-

cients c
(p,r)
µiµnlLµnlLµnlL in an explicitly rotationally and inversion

invariant basis and generalized Clebsch-Gordan coe�-
cients, where LLL indicates the couplings in the generalized
Clebsch-Gordan coe�cients7.

The atomic base is computed as

Aiµnlm =
X

j

�µµj�µjµinlm(rrrji) , (7)

and

�µjµinlm = R
µjµi

nl (rji)Ylm(r̂rrji) , (8)

with spherical harmonics Ylm(r̂rrji) and radial functions
R

µjµi

nl (rji) and di↵erence vectors given as rrrji = rrrj � rrri,
rji = |rrrji| and r̂rrji = rrrji/rji.

III. EXPRESSION FOR THE FORCES

The forces may be obtained from using an adjoint
method1,7

rkEi =
X

µnlm

!iµnlmrkAiµnlm , (9)

with

!iµnlm =
X

r=1

X

µnlmµnlmµnlm

⇥(r)
iµnlmµnlmµnlm

rX

t=1

dB
(r)
iµnlmµnlmµnlmt , (10)

and where

dB
(r)
iµnlmµnlmµnlmt = �µµt�nnt�llt�mmt

⇥

t�1Y

k=1

Ainklkmk

!
rY

k=t+1

Ainklkmk

!
, (11)

and

⇥(r)
iµnlmµnlmµnlm =

X

p

@F

@⇢
(p)
i

c̃
(p,r)
µiµnlmµnlmµnlm . (12)

For the gradients of the atomic base one has

rkAiµnlm = �µµkrk�µkµinlm(rrrki)

�
X

j

�µµjrj�µjµinlm(rrrji)�ik , (13)

where we use

�µjµinlm(rrrji) = �µiµjnlm(rrrji) , (14)

ri�µjµinlm(rrrji) = �rj�µiµjnlm(rrrji) . (15)

Then from

fffki =
X

nlm

!iµknlmrk�µkµilm(rrrki) , (16)

the force on atom k is written as

FFF k =
X

i

(fff ik � fffki) . (17)

IV. REQUIRED INPUT AND RESULTS

For running the ACE code the user needs to provide
the basis vectors µnlmµnlmµnlm for each required rank r and for
each density and the corresponding expansion coe�cients

c̃
(p,r)
µiµnlmµnlmµnlm. The user also needs to specify the radial basis

functions R
µjµi

nl .
We provide several examples for functions sEi =

F (⇢(1)i , . . . , ⇢
(P)
i) and the derivatives dF

d⇢(p) . For the imple-
mentation of other functions F we furthermore supply a
simple interface that users may easily adapt to their par-
ticular choice for F .
During the simulation the ACE code expects a neigh-

borlist for each atom i that contains information on the
vectors to neighboring atoms rrrji as well as the species of
the atom i and neighbors j, µi and µj , respectively.
The ACE code then computes the energy Ei and the

pairwise force components fff ij from which the atomic
forces are assembled. Further, pressure and stresses are
computed from the pairwise force components13.

V. WORKFLOW

A. Memory layout and assembly

After reading the input, the necessary memory is allo-
cated and variables are assembled into arrays. The arrays

Aiµnlm, B(r)
iµnlmµnlmµnlm, dB(r)

iµnlmµnlmµnlmt, ⇢
(p)
i and !iµnlm have atomic

index i, but they are always utilized for one atom only
and the index i is omitted.
For fast memory access and e�cient memory man-

agement multi-dimensional arrays are organized into
a contiguous memory layout. For example, the
spherical harmonics indices l and m are contracted
into a single index (lm) by consecutive enumeration,
(0, 0), (1,�1), (1, 0), (1, 1),

B. Force and energy evaluation

The energy and force for a given atom i are obtained
in five steps,

Drautz et al. (npj CompMat 2021)
LAMMPS Package ML-PACE
Advances the Pareto front

with v= (v1, v2,…, vν), which leads to1:

X

j1;¼ ;jr

Φvðrj1 i ; ¼ ; rjr iÞ ¼
Yν

t¼1

Aivt : (5)

We call this reformulation the “density trick” (also used by Bartók
et al.16 and Shapeev7 in formulating SOAP and MTP, respectively)
and it results in the computational cost of an atomic property φi
scaling linearly in N (due to evaluating the Aik) and also linearly in ν
(due to evaluating the correlations). Furthermore, we present a
recursive evaluation scheme that avoids the ν-scaling altogether.
An ACE model may be defined in terms of several atomic

properties φðpÞ
i , p= 1,…, P, for each atom i. For the simplest linear

model of the potential energy one would use just one property,
the atomic energy Ei:

Ei ¼ φð1Þ
i : (6)

A more elaborate model may generalize the pairwise repulsion
and the pairwise density of the FS potential4 to arbitrary many-
atom interactions:

Ei ¼ φð1Þ
i $

ffiffiffiffiffiffiffiffi
φð2Þ
i

q
: (7)

In general, a large number of different atomic properties that are
regarded as descriptors enter a nonlinear function:

Ei ¼ F ðφð1Þ
i ; ¼ ;φðPÞ

i Þ ; (8)

where the nonlinearity F may be explicit as in the FS model, or
represent a general approximator such as artificial neural net-
works, as used by Behler and Parrinello17, or a kernel ridge
regression model as used in the Gaussian approximation potential
(GAP)16.
Different non-linearities F may be used to incorporate physical

or chemical insights in bond formation. Since the d-shell of copper
is nearly full, angular contributions are generally small in the bulk.
The unsaturated metallic bonds in the close-packed fcc ground
state are modeled well by classical central-force functionals with
nonlinear EAM or FS type embedding functions that effectively
generate high body-order terms3,4,18. Our parameterization for
copper therefore starts from the FS representation of the energy,
as in Eq. (7), but with the two atomic properties not limited to
pairwise terms but including many-atom contributions that
capture small angular contributions in the bulk and larger angular
contributions in small clusters or two-dimensional structures.
On the other hand, the diamond structure of silicon is stabilized

by angular contributions over close-packed structures, which
highlights the importance of interactions beyond pairwise terms.
In contrast to Cu the σ bonds in Si are nearly saturated19, which
implies that to lowest order atomic energies in the open structures
are linear in the number of bonds and a nonlinear embedding is

not required. Many different angle-dependent potentials have
been developed for Si. Perhaps the best known are the
Stillinger–Weber potential20 with a linear three-body term and
the Tersoff potential21 which includes nonlinear functions of
three-body contributions. The most accurate potential for silicon
to date, the SOAP-GAP model of Bartók et al.22 is an intrinsically
high body-order potential. Here, we present a linear ACE for Si,
which may be viewed as a generalization of this potential that
includes all body-order interactions up to some maximum. In this
way, ACE is employed in its basic form shown in Eq. (6), which
simplifies the parameterization considerably and avoids implicit
assumptions on the form of nonlinear terms that are often present
in ML frameworks.
We carry out a detailed comparison of both our ACE

parameterizations to the most reliable models available from
literature. For Cu, we compare to the EAM potential by Mishin
et al.23, to a recent SNAP24 parameterization as well as the GTINV8

ML potential. For Si, we compare to the GAP that was shown to
reproduce a wide range of observable properties for crystalline,
liquid, and amorphous Si phases22.

RESULTS AND DISCUSSION
Reference data
The parameterization for Cu was obtained by matching to the
energies and forces of about 50,000 total energy calculations as
obtained with density functional theory (DFT) using the PBE25

functional as implemented in the FHI–aims code26,27. The
reference data included small clusters, bulk structures, surfaces
and interfaces, point defects and their randomly modified variants.
Part of the reference data has been briefly described in ref. 1, but
has been extended significantly for the present parameterization.
For example, supercells for many elemental prototype structures
with slightly displaced or missing atoms were added, as well as
surfaces, interfaces and stacking faults (SF) with displaced atoms.
Many structures were pulled apart until the atomic interactions
vanished or compressed significantly. By far the most calculations
were not relaxed to a force and stress free state. We employed
pyiron28 for generating part of the reference data.
The parameterization for Si was obtained by fitting to the same

extensive silicon database GAP was fit to22. The database covers a
wide range of configurations including crystalline structures,
surfaces, vacancies, interstitials, and liquid phases. The DFT
reference data were generated using the CASTEP29 software
package.

Parameterization and timing
We used different parameterization strategies for Cu and Si
motivated by their different bond chemistry. In particular, the Si

Fig. 1 ACE Pareto front. Test RMSE vs. computational cost for Cu (a) and Si (b) for ACE potentials compared to a recent benchmark study15.
The timings from Zuo et al.15 were reduced by constant factors 0.55 (Cu) and 0.60 (Si) to correct for hardware differences and the ACE timings
then overlaid.

Y. Lysogorskiy et al.

2

npj Computational Materials (2021) ���97� Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

12
34

56
7
89

0(
):,
;

with v= (v1, v2,…, vν), which leads to1:

X

j1;¼ ;jr

Φvðrj1 i ; ¼ ; rjr iÞ ¼
Yν

t¼1

Aivt : (5)

We call this reformulation the “density trick” (also used by Bartók
et al.16 and Shapeev7 in formulating SOAP and MTP, respectively)
and it results in the computational cost of an atomic property φi
scaling linearly in N (due to evaluating the Aik) and also linearly in ν
(due to evaluating the correlations). Furthermore, we present a
recursive evaluation scheme that avoids the ν-scaling altogether.
An ACE model may be defined in terms of several atomic

properties φðpÞ
i , p= 1,…, P, for each atom i. For the simplest linear

model of the potential energy one would use just one property,
the atomic energy Ei:

Ei ¼ φð1Þ
i : (6)

A more elaborate model may generalize the pairwise repulsion
and the pairwise density of the FS potential4 to arbitrary many-
atom interactions:

Ei ¼ φð1Þ
i $

ffiffiffiffiffiffiffiffi
φð2Þ
i

q
: (7)

In general, a large number of different atomic properties that are
regarded as descriptors enter a nonlinear function:

Ei ¼ F ðφð1Þ
i ; ¼ ;φðPÞ

i Þ ; (8)

where the nonlinearity F may be explicit as in the FS model, or
represent a general approximator such as artificial neural net-
works, as used by Behler and Parrinello17, or a kernel ridge
regression model as used in the Gaussian approximation potential
(GAP)16.
Different non-linearities F may be used to incorporate physical

or chemical insights in bond formation. Since the d-shell of copper
is nearly full, angular contributions are generally small in the bulk.
The unsaturated metallic bonds in the close-packed fcc ground
state are modeled well by classical central-force functionals with
nonlinear EAM or FS type embedding functions that effectively
generate high body-order terms3,4,18. Our parameterization for
copper therefore starts from the FS representation of the energy,
as in Eq. (7), but with the two atomic properties not limited to
pairwise terms but including many-atom contributions that
capture small angular contributions in the bulk and larger angular
contributions in small clusters or two-dimensional structures.
On the other hand, the diamond structure of silicon is stabilized

by angular contributions over close-packed structures, which
highlights the importance of interactions beyond pairwise terms.
In contrast to Cu the σ bonds in Si are nearly saturated19, which
implies that to lowest order atomic energies in the open structures
are linear in the number of bonds and a nonlinear embedding is

not required. Many different angle-dependent potentials have
been developed for Si. Perhaps the best known are the
Stillinger–Weber potential20 with a linear three-body term and
the Tersoff potential21 which includes nonlinear functions of
three-body contributions. The most accurate potential for silicon
to date, the SOAP-GAP model of Bartók et al.22 is an intrinsically
high body-order potential. Here, we present a linear ACE for Si,
which may be viewed as a generalization of this potential that
includes all body-order interactions up to some maximum. In this
way, ACE is employed in its basic form shown in Eq. (6), which
simplifies the parameterization considerably and avoids implicit
assumptions on the form of nonlinear terms that are often present
in ML frameworks.
We carry out a detailed comparison of both our ACE

parameterizations to the most reliable models available from
literature. For Cu, we compare to the EAM potential by Mishin
et al.23, to a recent SNAP24 parameterization as well as the GTINV8

ML potential. For Si, we compare to the GAP that was shown to
reproduce a wide range of observable properties for crystalline,
liquid, and amorphous Si phases22.

RESULTS AND DISCUSSION
Reference data
The parameterization for Cu was obtained by matching to the
energies and forces of about 50,000 total energy calculations as
obtained with density functional theory (DFT) using the PBE25

functional as implemented in the FHI–aims code26,27. The
reference data included small clusters, bulk structures, surfaces
and interfaces, point defects and their randomly modified variants.
Part of the reference data has been briefly described in ref. 1, but
has been extended significantly for the present parameterization.
For example, supercells for many elemental prototype structures
with slightly displaced or missing atoms were added, as well as
surfaces, interfaces and stacking faults (SF) with displaced atoms.
Many structures were pulled apart until the atomic interactions
vanished or compressed significantly. By far the most calculations
were not relaxed to a force and stress free state. We employed
pyiron28 for generating part of the reference data.
The parameterization for Si was obtained by fitting to the same

extensive silicon database GAP was fit to22. The database covers a
wide range of configurations including crystalline structures,
surfaces, vacancies, interstitials, and liquid phases. The DFT
reference data were generated using the CASTEP29 software
package.

Parameterization and timing
We used different parameterization strategies for Cu and Si
motivated by their different bond chemistry. In particular, the Si

Fig. 1 ACE Pareto front. Test RMSE vs. computational cost for Cu (a) and Si (b) for ACE potentials compared to a recent benchmark study15.
The timings from Zuo et al.15 were reduced by constant factors 0.55 (Cu) and 0.60 (Si) to correct for hardware differences and the ACE timings
then overlaid.

Y. Lysogorskiy et al.

2

npj Computational Materials (2021) ���97� Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

12
34

56
7
89

0(
):,
;

Conclusions
ML interatomic potentials are driving a broad transition in the role of large-scale atomistic materials modeling from
qualitative descriptions to quantitative predictions

Current Areas of Research

Combining SNAP and ANNs

Descriptors (feature selection)

Many-element, chemically-active materials

Long-term Goal: Integrated HPC workflow that iteratively generates a trusted ML potential for each materials modeling
application, limited only by ability to generate training data.

Many challenges remain:

Robustness: 1-in-a-billion bad force predictions can kill a LAMMPS simulation

On-the-fly accuracy estimate: hard, because no QM query on large-scale

Active learning: smart automated training data generation

Acknowledgements

LAMMPS
Steve Plimpton
Stan Moore
Axel Kohlmeyer (Temple U.)
Rahul Gayatri (NERSC)
Evan Weinberg (NVIDIA)

FundingSNAP
• Mitch Wood
• Mary Alice Cusentino
• Julien Tranchida
• Svetoslav Nikolov
• David Montes
• Nick Lubbers (LANL)
• Ivan Oleynik, Jon

Willman, Kien Cong
(USF)

Extra

17

SNAP GPU Performance
18

NVIDIA V100
SNAP Tungsten
2k atoms

• GPU Performance Timeline
Gayatri, Moore, Weinberg et al. (2020)
https://arxiv.org/abs/2011.12875

• ~50x improvement over baseline

GPU Performance Optimization

• Highly collaborative effort involving:
Sandia, LANL, NERSC, NVIDIA, several
hackathons and a lot of experimentation

• Created stripped-down proxy code
(TestSNAP)

• Completely rewrote TestSNAP to reduce
flops and memory

• Explored many different GPU strategies,
using OpenACC, CUDA, and Kokkos

• break up the force kernel into sub-
kernels and pushing atom/neighbor
parallelism into the sub-kernels

• Ported best implementation back to
production code with Kokkos

• Further improvements in memory access

https://arxiv.org/abs/2011.12875

1 2 4 8 16 32 64 128 256 512 1024
Summit Nodes

0.1

1

10

100

ns
 /

da
y

SNAP 4M atoms
EAM 4M atoms

SNAP GPU Performance
19

SNAP
4M atoms

Best Speed
4 ns/day
30 katoms/node

EAM 4M atoms

3xBest Speed
80 ns/day
4M atom/node

Summit Strong-Scaling• Excellent strong scaling on Summit
• Leadership DOE Computing Platform (ORNL)
• 4608 nodes, 6 NVIDIA v100s/node, 200 petaFlops
• Comparison of EAM and SNAP Simulation Speed vs.

Summit Node Count

20
SNAP Exploits DOE Exascale Computer
Platforms

Oak Ridge Frontier (2022)
1.5 exaFLOPS

LLNL El Capitan (2023)
2 exaFLOPS

Argonne Aurora (2022)
1 exaFLOPS

NERSC Perlmutter (2021)
0.1 exaFLOPS

Jan-2018 Jan-2019 Jan-2020 Jan-20210

0.2

0.4

0.6

0.8

1

M
at
om
-s
te
ps
/s

1 2 4 8 16 32 64 128 256 512 1024
Summit Nodes

0.1

1

10

100

ns
 /

da
y

SNAP 4M atoms
EAM 4M atoms

Continuous Code Improvements Utilizing Power of Summit

EAM W
80ns/day SNAP W

30 ns/day

2-3x

Summit Strong Scaling 4M atoms

Path to Exascale

ORNL Summit (2020)
0.2 exaFLOPS

SNL Astra (2020)
1 petaFLOPS

MLIAP Python Models: PyTorch21

• Created by Nick Lubbers (LANL)
• New MLIAP Model style mliappy
• Leverages vast code base of powerful Python

packages e.g. PyTorch for fast and flexible
implementation of network structures

• Efficiently couples LAMMPS and any Python code
using Cython

• During simulation LAMMPS drives Python using
embedded Python interpreter

• Compatible with library mode, can have Python
script drive LAMMPS

• Released December 2020

MLIAPPY in
lammps.py

MLIAP
mliappy

model

Pair
MLIAP

Model defined by
mliap_pytorch

object

mliap_pytorch.py

