

## High-Fidelity Large-Scale Atomistic Simulations of Materials using Big Computers and Machine-Learning Interatomic Potentials





Aidan Thompson Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico

LAMMPS Workshop and Symposium, August 10-13, 2021

<sup>1</sup> SAND2020-2640 C





Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Machine-Learning Potentials: Quantum Accuracy, Classical Scaling

#### Quantum Molecular Dynamics

- Input: ion positions
- Output: Electronic structure, energy, forces, stress
- Expensive
- O(N<sup>3</sup>) scaling
- N ~ 100

2



Physics-inspired Potential

$$E = \sum_{i} E_{i}$$
$$E_{i} = \sum_{i} f(r_{ij})$$

**Classical Molecular Dynamics** 

- No electrons
- Interatomic potential
- O(N) scaling
- N ~ millions, billions
- Accuracy is a problem



# Machine-Learning Potentials: Quantum Accuracy, Classical Scaling

#### Quantum Molecular Dynamics

- Input: ion positions
- Output: Electronic structure, energy, forces, stress
- Expensive
- O(N<sup>3</sup>) scaling
- N ~ 100

3



Physics-inspir Potential  $E = \sum_{i} E_{i}$  $L_{i} = \sum_{j} f(r_{ij})$ 

Machine-Learning Potential



"SNAP: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials" Thompson et al. J.Comp.Phys. 2015.

#### **Classical Molecular Dynamics**

- No electrons
- Interatomic potential
- O(N) scaling
- N ~ millions, billions
- Accuracy is a problem





# SNAP: Good tradeoff on accuracy and performance

"Performance and Cost Assessment of Machine Learning Interatomic Potentials" Zuo, Chen, Li, Deng, Chen, Behler, Csányi, Shapeev, Thompson, Wood, and Ong. J.Phys.Chem A. 2020.

5



- SNAP is competitive with the best approaches world wide
- In a 2020 independent study of 4 leading approaches (left), quadratic SNAP achieved good cost/accuracy balance on all 6 elements
- Also showed good stability in extrapolation



#### World Map of Leading ML Potentials

# **SNAP Applications**

### Fusion Energy



# Refractory Alloys



#### Compound Semiconductors



#### Magnetic Materials

6



#### Phase Change Kinetics



**Extreme Conditions** 

# **SNAP GPU Performance on Summit**

EAM W

80ns/day

2 Billion atoms

• Single-GPU performance improved by 25x-50x since 2018

is / day

25 Million atoms

- Excellent strong scaling on Summit
- 30ns/day for typical problem sizes



7

2-3x

16 32 64 Summit Nodes

SNAP W 30 ns/day

G SNAP 4M atoms
 G EAM 4M atoms

64 128 256 512 1024

Summit Strong Scaling 4M atoms





- SNAP for exoplanetary carbon
- Entire Summit machine (27,900 GPUs)
- Scaled up 2 Billion atoms (0.1 x 0.1 x 1 micron<sup>3</sup>)
- Achieved 47 PFLOPS, 23% of peak
- 5.9 Matom-steps/node-s 22x improvement on DeepMD

# **Taxonomy of MLIAP Atomic Descriptors**

#### Requirements

8

- Invariances: Rotation, Translation, Permutation
- Equivariant forces
- Smooth Differentiable
- Extensible

#### **Diverse Descriptors**

- 2body:  $d_{ij} = \|\mathbf{r}_i \mathbf{r}_j\|$
- 3body:  $\cos \theta_{ijk} = \hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{r}}_{ik}$
- Behler-Parrinello
- ChIMES Polynomials
- Tensor invariants (Ramprasad)
- DeepPot Tensors
- SE(3)-equivariant tensors
- Graph methods
- Local coordinate frame

Bartok, Kondor, Csanyi, "On Representing Chemical Environments," Phys.Rev.B, 2013



#### **Basis expansions**

- Steinhardt parameters SO(3)
- SOAP SO(3)
- SNAP SO(4)
- Power Spectrum (3-body)
- Bispectrum (4-body)
- Moment tensors (N-body)
- ACE (N-body)

Drautz, "Atomic cluster expansion for accurate and transferable interatomic potentials," Phys.Rev.B, 2019

# **MLIAPs Available in LAMMPS**

Native LAMMPS

#### **ML-SNAP**

#### LAMMPS Packages

**ML-HDNNP**: Singraber, N2P2, Behler-Parrinello Descriptors, ANN Potentials

**ML-PACE**: Lysogorskiy, Drautz, Atomic Cluster Expansion

**ML-QUIP**: Bartok, Csanyi, GAP Potentials, SOAP Descriptors

**ML-RANN**: Dickel, NN potential with fast fingerprints

**KIM**: Tadmor, many ML potentials: DUNN, hNN, PANNA

#### **External LAMMPS Packages**

**USER-DEEPMD**: Zhang, E, Car, Deep Network Potentials

**USER-MLIP**: Seko, Machine Learning Potential Repository

**USER-MLIP**: Shapeev, Moment Tensor Potentials

**USER-PINN**: Mishin, Physically informed neural network potential

**USER-ANI**: Barros, Smith, Lubbers, ANI ANN Potentials

**USER-AENET**: Artrith, Behler-Parrinello Descriptors, ANN Potentials

:

# How are MLIAPs Implemented in LAMMPS?

### Background

Many groups using the same infrastructure (LAMMPS, PyTorch, TensorFlow, SciKitLearn)

Many unique ideas are in descriptors (e.g. ACE, DeepPot)

### **Typical Approach**

Create stand-alone code

Later, interface to LAMMPS

### Disdavantages

Requires substantial knowledge of LAMMPS structure

Code is hard to understand/modify

Incomplete LAMMPS compatibility

Descriptors and models are hardwired together

# LAMMPS ML-IAP Package



*Inputs Outputs* Atoms Energy Elements Force Neighbors Stress



#### Data

Model

### https://lammps.sandia.gov/doc/pair\_mliap.html

Descriptor

#### **Prototype Completed**

ML-IAP package released in public LAMMPS

Defines commands for both running and training ML potentials

All variants of SNAP models and descriptors are implemented

Negligible performance overhead

Allows mix-and-matching of Models and Descriptors

### MLIAP Force (Running Simulation)

descs = Desc.getDescs(atoms)
modelGrads = Model.getGrads(descs)
forces = Desc.getForces(modelGrads)

### MLIAP Force Gradient (Training Model)

#### Algorithm 1: N<sub>PARAMS</sub> x N<sub>DESCRIPTORS</sub>

descs = Desc.getDescs(atoms)
gradGrads = Model.getGradGrads(descs)
forceGrads = Desc.getForceGrads(gradGrads)

#### Algorithm 2: N<sub>NEIGHS</sub> x N<sub>DESCRIPTORS</sub>

descGrads = Desc.getDescGrads()
forceGrads = Model.getForceGrads(descGrads)
11

# LAMMPS ML-IAP Package

- Provides a simple and general interface for ML potentials in LAMMPS
- Allows mix-and-matching of different Descriptors and Models
- Can be used for both running simulations and training
- Supports all SNAP Descriptor/Model variants
- Python and PyTorch models
- ANN Model native (Pedro Santos Flórez, Qiang Zhu, UNLV)
- SO(3) Descriptors (Qiang Zhu, UNLV)
- PANACEA: A model for information entropy in Descriptor space (Josh Brown, Danny Perez, LANL)

# LAMMPS ML-IAP Package: PyTorch

# • Can define a SNAP model in four different ways: <u>SNAP</u>

pair\_style snap

pair\_coeff \* \* Ta06A.snapcoeff Ta06A.snapparam Ta

### **MLIAP Linear model**

pair\_style mliap &

descriptor **sna** Ta06A.mliap.descriptor &

model linear Ta06A.mliap.model

pair\_coeff \* \* mliap Ta

## MLIAP PyTorch model

pair\_style mliap &
descriptor sna Ta06A.mliap.descriptor &
model mliappy Ta06A.mliap.pytorch.model.pkl
pair\_coeff \* \* mliap Ta

### MLIAP PyTorch model from Python

lmp.commands\_string(setup\_commands) # mliappy model left undefined
lmp.mliappy.load\_model(pickle.load(open('Ta06A.mliap.pytorch.model.pkl')))

# New Descriptor: Atomic Cluster Expansion (ACE)

### Atomic Cluster Expansion (ACE) 2,3,...,N-

body irreducible scalar invariants Drautz, Phys.Rev.B, 2019 Willatt, Musil, Ceriotti, J.Chem.Phys. 2019 Seko, Togo, Tanaka, Phys.Rev.B 99, 2019

- Local environment expanded in atomic basis
- Generates very general set of 2, 3, ...N-body irreducible scalar invariants
- Superset of many previous descriptors (SNAP, GAP, MTP, BP)
- For example, SNAP bispectrum components can be expressed in this form



Drautz et al. (npj CompMat 2021) LAMMPS Package ML-PACE Advances the Pareto front



14

0

# Conclusions

ML interatomic potentials are driving a broad transition in the role of large-scale atomistic materials modeling from qualitative descriptions to quantitative predictions

Current Areas of Research

Combining SNAP and ANNs

Descriptors (feature selection)

Many-element, chemically-active materials

Long-term Goal: Integrated HPC workflow that iteratively generates a trusted ML potential for each materials modeling application, limited only by ability to generate training data.

Many challenges remain:

**Robustness:** 1-in-a-billion bad force predictions can kill a LAMMPS simulation

On-the-fly accuracy estimate: hard, because no QM query on large-scale

Active learning: smart automated training data generation

# Acknowledgements

### LAMMPS



Steve Plimpton

Stan Moore

Axel Kohlmeyer (Temple U.)

Rahul Gayatri (NERSC)

Evan Weinberg (NVIDIA)



- Mitch Wood
- Mary Alice Cusentino
- Julien Tranchida
- Svetoslav Nikolov
- David Montes
- Nick Lubbers (LANL)
- Ivan Oleynik, Jon Willman, Kien Cong (USF)







17

### Extra

ħ

# SNAP GPU Performance

#### **GPU Performance Optimization**

- Highly collaborative effort involving: Sandia, LANL, NERSC, NVIDIA, several hackathons and a lot of experimentation
- Created stripped-down proxy code (TestSNAP)
- Completely rewrote TestSNAP to reduce flops and memory
- Explored many different GPU strategies, using OpenACC, CUDA, and Kokkos
- break up the force kernel into subkernels and pushing atom/neighbor parallelism into the sub-kernels
- Ported best implementation back to production code with Kokkos
- · Further improvements in memory access

- GPU Performance Timeline Gayatri, Moore, Weinberg et al. (2020) <u>https://arxiv.org/abs/2011.12875</u>
- $\sim$  50x improvement over baseline



# SNAP GPU Performance

- Excellent strong scaling on Summit
- Leadership DOE Computing Platform (ORNL)
- 4608 nodes, 6 NVIDIA v100s/node, 200 petaFlops
- Comparison of EAM and SNAP Simulation Speed vs.
   Summit Node Count





# **SNAP Exploits DOE Exascale Computer Platforms**



**Continuous Code Improvements** 



**Utilizing Power of Summit** 

ORNL Summit (2020) 0.2 exaFLOPS



Path to Exascale



ħ

# **MLIAP Python Models: PyTorch**

- Created by Nick Lubbers (LANL)
- New MLIAP Model style *mliappy*
- Leverages vast code base of powerful Python packages e.g. PyTorch for fast and flexible implementation of network structures
- Efficiently couples LAMMPS and any Python code using Cython
- During simulation LAMMPS drives Python using embedded Python interpreter
- Compatible with library mode, can have Python script drive LAMMPS
- Released December 2020



