A computational framework for studying normal mode dynamics

Andrew Rohskopf Advisor: Asegun Henry

Massachusetts Institute of Technology Department of Mechanical Engineering

Modes & phonons: how does heat flow?

Traditional theory can't describe these.

Arrows are eigenvectors centered on atoms.

Strongly interacting modes

Interface mode

Extended mode

Eigenvector overlap

Strongly interacting modes

Interface mode

Optical mode

Eigenvector overlap

Weakly interacting modes

Interface mode

Extended mode

No eigenvector overlap

Studying real-time vibrational energy transfer

Heat flux in mode coordinates

Breaking crystal symmetry with defects

Frequency (THz)

ModeCode extracts modes for any system

https://github.com/rohskopf/modecode

Morse $E = \lambda_1 \left[1 - \exp\left(-\lambda_2 \left(r - \lambda_3\right)\right) \right]^2$ Linear Regression $E = \beta_0 + \sum_k \beta_k B_k$ Neural Networks

Rohskopf, Andrew, et al. "Fast & accurate interatomic potentials for describing thermal vibrations." *Computational Materials Science* 184 (2020): 109884.

Rohskopf, Andrew, et al. "Empirical interatomic potentials optimized for phonon properties." *NPJ Computational Materials* 3.1 (2017): 1-7.

Accurate heat transfer simulations

Gallium nitride

 $E = \frac{1}{2} \sum_{ii} K_{ij} u_i u_j + E_{SNAP}$

Rohskopf, Andrew, et al. "Fast & accurate interatomic potentials for describing thermal vibrations." *Computational Materials Science* 184 (2020): 109884.

Backup Slides

Mode coordinates

 $X_n = \sum \sqrt{m_i u_i^{\alpha} e_{ni}^{\alpha}}$ i,α

 $\dot{X}_n = \sum \sqrt{m_i} v_i^{\alpha} e_{ni}^{\alpha}$ i, α