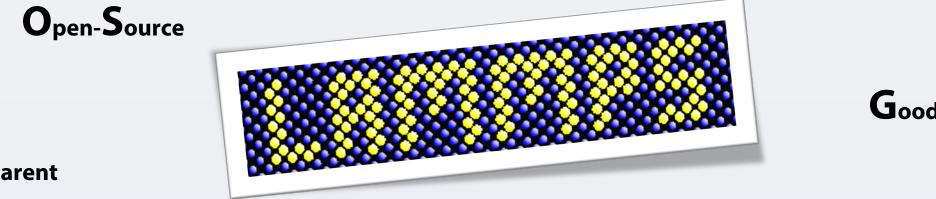
Materials Square : How to Reduce the Barriers to Entry for LAMMPS ?



Scientific Research on the Cloud

Virtual Lab, Inc Minkyu Park (VP)

Classical molecular dynamics Code

WHY LAMMPS?

Well-Documented/Well-Communicated

(Special Thanks to Steve)

I ALSO HAVE USED LAMMPS IN MY STUDIES SINCE 2012

- Calculate diffusive lattice thermal conductivity of Graphene
- Non-Equilibrium molecular dynamics (Direct method)
- Length : ~ 16 μm (around 5M atoms)
- Tersoff potential with the parameter set*
- Results : 3,200 W/m-K at 16 μm

* Optimized by Lindsay and Broido

JOURNAL OF APPLIED PHYSICS 114, 053506 (2013)

Length-dependent lattice thermal conductivity of graphene and its macroscopic limit

Minkyu Park, ^{1,2} Sun-Chul Lee, ¹ and Yong-Sung Kim^{1,2,a}) Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea ⁻Department of Nano Science, University of Science and Technology, Daejeon 305-350, South Korea

(Received 16 June 2013; accepted 15 July 2013; published online 2 August 2013)

In this paper, we report a non-equilibrium molecular dynamics study on the length-dependent lattice thermal conductivity of graphene with lengths up to 16 μ m at room temperature. In the molecular dynamics simulations, whether the non-equilibrium systems reach the steady states is rigorously investigated, and the times to reach the steady states are found to drastically increase with the lengths of graphene. From the ballistic to the diffusive regime, the lattice thermal conductivities are explicitly calculated and found to keep increasing in a wide range of lengths with finally showing a converging behavior at 16 μ m. That obtained macroscopic value of the lattice thermal conductivity of graphene is 3200 WinK. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817175]

I. INTRODUCTION

Molecular dynamics (MD) simulations to calculate the lattice thermal conductivity of a system have unique advantages that the phonon scattering events can be treated without an approximation and the amorphous or highly defective systems, which are essentially important for high figure-of-merit thermoelectric applications, can be explicitly investigated. Nevertheless, due to the huge computational costs, the accessible sizes of the systems have been only limited to nm-scale typically, although sometimes extended to one or two μ m, and thus the direct comparison with the experiments, of which samples are typically a few μ m or longer, has not yet been possible, and also the predictive power of the MD simulations for the lattice thermal conductivity has neither been so strone.¹

This situation is not very different for the graphene systems, which have been known to have very high thermal conductivities and thus expected to be used as highly efficient heat dissipation materials. Where the experimentally obtained thermal conductivities for a suspended single-layer graphene have been in the range of 1800-5300 W/mK for the graphene sizes of $2-10 \mu m_{\star}^{-2.6}$ the dDD simulations have given the lattice thermal conductivities of 90-5500 W/mK for the graphene lengths of $2 \,\mathrm{nm} \cdot 2 \,\mathrm{nm}^{-3.6}$ The discrepancy and the wide ranges can come from the possible inaccuracy of the MD simulations or experiments, but the strong lengthdependence of the thermal conductivities of graphene from the nm- to the μ -m-scale can also contribute to them.

In such a small size of graphene in the MD simulations, the thermal conductivity is expected to be in the ballistic thermal transport regime. With the MD simulations, although various thermal conductivity engineering methods through changing the finite widths (graphene nano ribbons).^{17,19} chirtion of the second secon be the same as the cases in the diffusive thermal transport regime, which should be important for the µm-scale experiments and applications. The extrinsic phonon scattering events can be dominant with respect to the phonon-phonon scattering events in such a ballistic thermal transport regime, but the extrinsic effects can be relatively weak in the diffusive regime, where the phonon-phonon scattering is dominant.

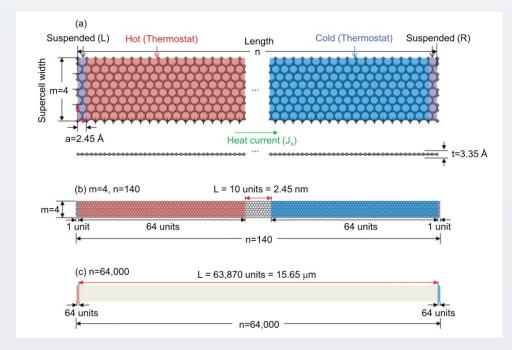
CrossMark

Thus, the evaluation of the thermal conductivities in MD simulations with the lengths from the ballistic to the diffusive regime is required. In this paper, we report the MD simulations on the length-dependent lattice thermal conductivities of graphene at room temperature up to the diffusive thermal transport regime. The thermal conductivities are found to keep increasing with the lengths and show a converging behavior at 16 μ m. The phonon mean free path of graphene is estimated to be ~800 nm, of which 20 times larger value is corresponding to the length of 16 μ m. The calculated macroscopic lattice thermal conductivity of graphene is 3200 W/mK, and the previous experiments with the samples smaller than 10 µm that give the smaller values of 1800-3100 W/mK (Refs. 5-8) are proposed to be in the intermediate thermal transport regime between the ballistic and the diffusive limits, in which the thermal conductivities are length-dependent.

II. METHODS

The lattice thermal conductivities of graphene are calculated by using non-equilibrium MD (NEMD) simulations, as implemented in the classical MD simulation code: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).²⁶ Figure 1 shows the supercell structures for the NEMD simulations. The supercell width (W) is denoted as *m* in the number of

I. Simulation Modeling

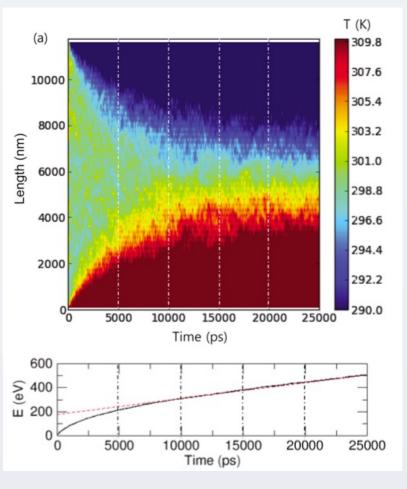

m = 4 (Supercell width)

/= 140 – 64,000 unitcell (Transport length)

Lattice constant = 2.45 Å, Thickness = 3.35 Å

Thermostats = 64 unitcell (each ends)

Last each ends are suspended

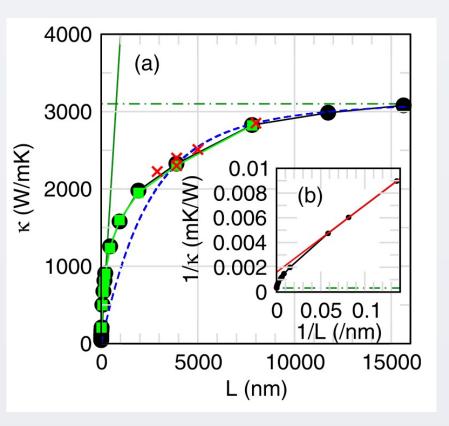

II. Calculation Details & Issues

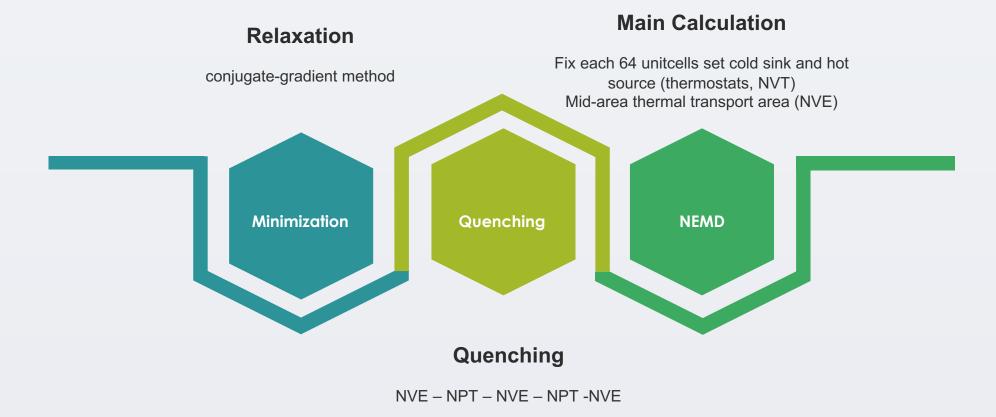
Fourier's law : $J = K\left(\frac{\Delta T}{L}\right)$

Heat flux (J) can be calculated by cumulative E (E_{cum})

 $E_{cum}(t) = [E_{hot}(t) - E_{Cold}(t)]/2$

Calculate slope, *E* as a function of *t* at the steady state


III. Results


 $K_{diffusive}$ of Graphene is 3,200 W/m-K at 16 μ m

This is also well-match with previous reports

Mode-independent phonon MFP = 865 nm (ref. 775 nm)

(Phenomenological high-order heat transport eq.)

- Set up units, atom style
- Load atomic coordinate
- Define interatomic forcefield
- Set up variables

on> Ouenching Proc	esss>	NEMD for therma	l conductivity
min>> nve1>> n nve2>> n nve3>> n	pt1(600-6 pt2(600-3 pt3(300-3	 00) 00) 00)>> nve4	
metal	,		
atomic			
3			
ррр			
data.pos			
1 12.0107			
* * CH.aire	bo C		
	0		
· · · · · ·			
dt			# INPUT
run_nve1	equal	100000	
run_nve2	equal	200000	
run_nve3	equal	100000	
run_nve4	equal	200000	
run_npt1	equal	2000000	
run_npt2	equal	200000	
run_npt3	equal	2000000	
rndn	equal	135753	
	min>> nve1>> n nve2>> n nve3>> n After equilibration metal atomic 3 p p p data.pos 1 12.0107 airebo 3 1 * * CH.aire Variables for quenchi N P T1 T2 Tdamp Pdamp dt run_nve1 run_nve1 run_nve3 run_nve4 run_npt1 run_npt3	<pre>min>> nve1>> npt1(600-6</pre>	atomic 3 p p p data.pos 1 12.0107 airebo 3 1 0 * * CH.airebo C Variables for quenching process N equal count(all) P equal 1.0125 T1 equal 600.0 T2 equal 300.0 T4amp equal v_dt*100 Pdamp equal v_dt*100 Pdamp equal v_dt*1000 dt equal 0.0005 run_nve1 equal 100000 run_nve2 equal 200000 run_nve4 equal 200000 run_npt1 equal 200000 run_npt2 equal 200000

- Run Relaxation and NVE calculation
- After that repeat twice NPT and NVE

(To remove artificial defect on the system)

Next step, thermal transport calculation

# Relaxation	
neighbor	2.0 bin
neigh_modify	every 10 delay 0 check yes
fix	br all box/relax iso 0.0 vmax 0.001
min_style	cg
minimize	1.00e-30 1.00e-30 100000 1000000
unfix	br
reset_timestep	0
# NVE 1	
timestep	\${dt}
thermo_style	custom step temp etotal pe ke enthalpy press lx ly lz vol density
thermo	1000
fix	nve1 all nve
variable	Temp equal temp
variable	ETOT equal etotal/v_N
variable	KE equal ke/v_N
variable	PE equal pe/v_N
variable	Pr equal press
fix	ave_nve1 all ave/time 100 10 1000 v_Temp v_ETOT v_PE v_KE v_Pr ave window 2 file temp_nve1.out
dump	pos_xyz all custom 50000 nve1_*.xyz id type x y z
dump_modify	pos_xyz sort id
run	\${run_nve1}
unfix	nvel
unfix	ave_nve1
undump	pos_xyz
write_restart	restart.nve1
reset_timestep	0

Run main calculation

(At that time, there was not another choice)

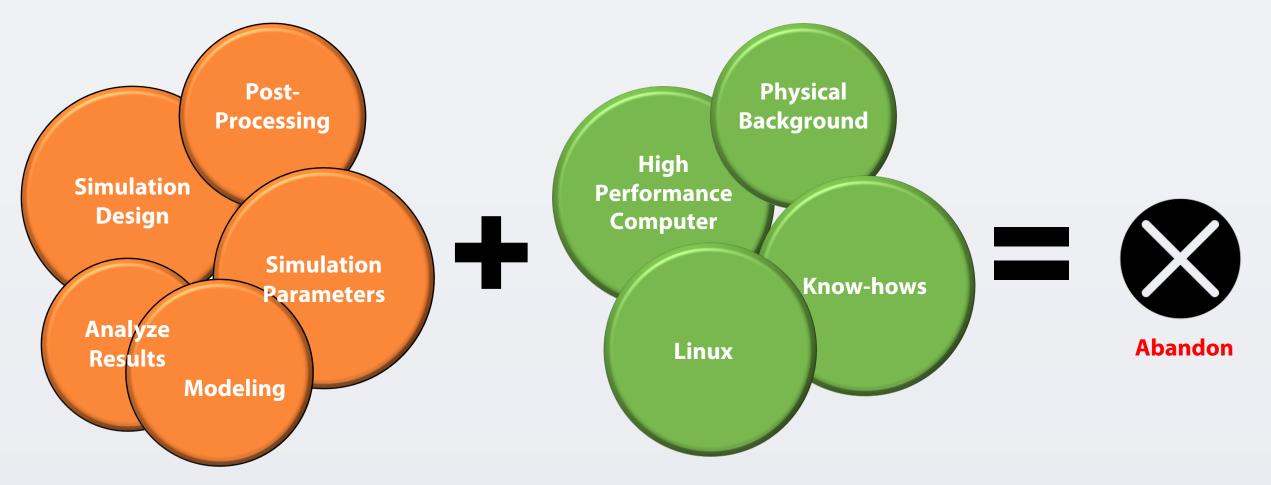
Today, there are several thermal

fix fixth grth nvt temp \${Th} \${Th} \${Tdamp} grtc nvt temp \${Tc} \${Tc} \${Tdamp} fix fixtc fix fixtm artm nve variable equal (f_fixtc-f_fixth)/2. encum variable endel equal (-f_fixtc-f_fixth)/2. custom step c_th c_tm c_tc f_fixth f_fixtc v_encum v_endel v_heat_x v_heat_y v_heat_z thermo_style dmp_them all custom 1000 md_rescaling.traj id element xu yu zu vx vy vz dump dmp_them sort id dump_modify

Thermal conductivity calculation, NVT (Thot)- NVE (transport) - NVT (Tcold)

conductivity calculation packages available.

After finish calculation, do post-process


(python code, house-code)

Finally, I get nice figures !

• • •	
-process tool for Lattice ten by MK (Virtual Lab) . 05. 04.	Thermal Conductivity
te log.	
. 05. 05. ing stdout_main -> tempera	ture dat
thy studic_math -> tempera	cut.
<pre>aw = open('stdout_main').r</pre>	eadlines()
in skip_raw:	
xx != '\n':	
<pre>if xx.split()[0] == 'Ste</pre>	p':
skip_raw_init = ii	
<pre>elif xx.split()[0] == 'L</pre>	oop':
skip_raw_final = ii += 1	
+= 1	
<pre>mp = open("temperature.dat</pre>	". 'w')
in skip_raw[skip_raw_init	
w_temp.write(xx)	
mp.close()	
	fixtc v_encum v_endel v_heat_x v_heat_y v_heat_z 5 6 7 8 9 10
numpy as np	
up variables	
	ps
ature_delta = 30*2 #	
00; mm = 6; nn = 1 #	
	16.4177627563; scalez = 3.2146000000 # lattice parameter
	scaley; height = nn*scalez
<pre>= np.loadtxt("temperature.</pre>	
= temp[:,0] * timestep #	
	Temperature (Thot, Tmid, Tcold)
	<pre>% Cumulative energy % Heatflux (Jx, Jy, Jz)</pre>
- ccmp[.,0.] "	10001 tux (3x, 3y, 3z)
ind the best fit	
cipy import stats	
t, yy_best = istep, encum	
ling = 10	
ng_list = range(0, len(enc	um), n_sampling)
= □; ii = 0	
ii < len(sampling_list):	
	_value, std_err = stats.linregress(xx_best[sampling_list[ii]:], yy_best[sampling_list[ii]:])
list.append(r_value)	
<pre>ii != 0 and p_list[ii] >=</pre>	p_list[ii-1]:
	r_value, p_value, std_err
+= 1	

THERE ARE MANY BARRIERS TO ENTRY SIMULATION

LAMMPS (Thermal Conductivity)-

00440

🕑 Thi	s job has been fi	inished normally (id : <u>34053</u>)						
Simulati	on Analysis								
Poten	tial table								
ID	Туре	Elements	Author						DOI
152	MEAM	W	Byeong-Joo Lee, M.I. Baskes,	Hanchul Kim, and Yang Ko	oo Cho				
			ColdSink	Transport direction :	x® y⊖ z⊖				
		(mac)		Supercell :	150 2		2		
	Tra	nsport Length (ILX)			1536 atoms				
urce		888888		Temperature (K) :	300				
Hot Source				Time (ps) :	500				
ku d				Timestep (fs) :	0.5				
			È	Job Submit					
	12		nz	Resource :	On-Demand 🗸	48		~	
				Job Name :	web_W_TC				
				Finish Notice :	🖾 E-mail				
								Submitt	ted

https://www.matsq.com

Cutting-Edge Materials Simulation Techniques

Professional Consulting & Technical Support

Everything on the Cloud

Ni edge dislocation-

This job has been finished normally (id : <u>33505</u>)

Simulation Analysis

Potential table

ID	Туре	Elements	Author		DOI
156	MEAM	Ni, Ti	WS. Ko et al.		8
	Shear		Crystal system :	FCC BCC O	
			Supercell :	30 40	4
 P				28800 atoms	
Fixed		33	Dislocation type :	Edge 🔍 Screw 🔾	
		322	Poisson's ratio :	0.3	
ength	2222	225	Displacement (Å) :	0.025	
2 × Deformation Length	2020	ny	Total shear strain (%):	15	
orma	Burgers ve	ctor	Total steps :	1158	
× Def	22222		Job Submit		
2	2222		Resource :	On-Demand 🗸	36
P			Job Name :	Ni edge dislocatio	on test
Fixed		nz	Finish Notice :	🖾 E-mail	
	nx				

materials square

0.

https://www.matsq.com

Cutting-Edge Materials Simulation Techniques

Professional Consulting & Technical Support

Everything on the Cloud

Shear

Market Validation Opportunity

We provide state-of-the-art materials simulation tools through Materials Square. We're constantly improving our existing services and adding new simulation methods. Professional consultants (Ph.D.) are ready to support your materials simulation needs from start to finish.

Professional Consulting

& Technical Support

Don't worry about the computing resources and licensing. Materials Square uses cloud computing to handle projects of any scale.

Everything on the Cloud

Thanks

Address 6F, 38 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

> **Contact numbers** +82-2-3293-0204

Email Address minkyu.park@matsq.com