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Interatomic Potentials as Multi-Scaling2

• IAP can be useful without 
being physically motivated

• Preserving accuracy through 
scales while becoming 
computationally efficient

• Need to be cautious of  what is 
promised with machine 
learning, most of  MD will be 
extrapolation
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Classical, Empirical Potentials

• Metals
o EAM: Assume spherical electron density

𝐸! = 𝐹" ∑#$! 𝜌% 𝑟!# + !
"
∑#$! ∅"% 𝑟!#

• Inorganic
o Stillinger-Weber: Assume 2,3-body 

harmonic springs

• Organic
o ReaxFF: Assume covalent bonding, 

smooth bond-orders between all 
interacting atoms

Return to the Master Plot3
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Machine Learned Potentials

Return to the Master Plot4
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• Metals, Inorganic, Organic, etc.
o Assume energy and forces are some 

function of  local atomic neighborhood 
descriptors

• Needs reference data to be properly trained 
to get the ‘right’ energies and forces

Accuracy



SNAP Applications
5

Ta

System

InP

WBeHe

2014

Year

2015

2017

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

31

NDoF

31

56

363

NTraining

665

25,052

Linear

Descriptors

Linear

Linear

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL Involved, Independent



SNAP Applications
6

Ta

System

InP

WBeHe

Actinides

NiMo

LiN

Various

2014

Year

2015

2017

2018

2018

2019

2020

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

31

NDoF

31

56

56

31

31

10-130

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL/LLNL

UCSD, Ong

UCSD, Ong

UCSD/SNL

Mo 2017 Phase diagram prediction 31 1000 LinearUCSD, Ong

SNL Involved, Independent



SNAP Applications
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Ta

System

InP

WBeHe

Actinides

NiMo

LiN

Various

InP

Al

2014

Year

2015

2017

2018

2018

2019

2020

2020

2021

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

Radiation damage, defects

Predicting electron density

31

NDoF

31

56

56

31

31

10-130

241

91

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

1,000

30

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

EME

NN

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL/LLNL

UCSD, Ong

UCSD, Ong

UCSD/SNL

SNL, Cusentino

SNL, Ellis

Mo 2017 Phase diagram prediction 31 1000 LinearUCSD, Ong

Fe 2021 Magnetic phase transition 1596 683 Quad+SpinSNL, Nikolov

AlNbTi 2020 High entropy alloy design 1596 7,250 QuadraticSNL, Tranchida

Si 2020 Neural network SNAP 1596 >5,000 NNUNLV, Zhu

SNL Involved, Independent



SNAP Applications
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WBeHN

System

C

C, V

-

Year

-

2021

Plasma facing materials

Usage

Planetary impacts, shock

Metal plasmas

56*

NDoF

1596

1596

>40,000

NTraining

30,000

10,000

Linear

Descriptors

Quadratic

Quadratic

SNL, Cusentino

Origin

USF, Willman

SNL, Wood

MoNbTaTi - HEA alloy design - >5,000 EMESNL, Startt

GeSe - Vitrification - >5,000 EMEUCD, Sievers

LiMoS - Li-ion batteries - >5,000 -UConn, Dongarre

SiGeSnPb - Thermoelectric materials - >5,000 -GWU, Li

(more in the literature, not an exhaustive list)

• Growing evidence that SNAP is a general use material model form, unlike any 
interatomic potential used in MD to date

• SNAP model training software now incorporated in Materials Design Inc. products

SNL Involved, Independent

https://www.materialsdesign.com/


SNAP Applications
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WBeHN

System

C

C, V

-

Year

-

2021

Plasma facing materials

Usage

Planetary impacts, shock

Metal plasmas

56*

NDoF

1596

1596

>40,000

NTraining

30,000

10,000

Linear

Descriptors

Quadratic

Quadratic

SNL, Cusentino

Origin

USF, Willman

SNL, Wood

MoNbTaTi - HEA alloy design - >5,000 EMESNL, Startt

GeSe - Vitrification - >5,000 EMEUCD, Sievers

W - Model form selection - 330,000 NNLANL/SNL

LiMoS - Li-ion batteries - >5,000 -UConn, Dongarre

SiGeSnPb - Thermoelectric materials - >5,000 -GWU, Li

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolations)?

(more in the literature, not an exhaustive list)

• Growing evidence that SNAP is a general use material model form, unlike any 
interatomic potential used in MD to date

• SNAP model training software now incorporated in Materials Design Inc. products

SNL Involved, Independent

https://www.materialsdesign.com/
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• A general use IAP is much more challenging to 
create.

• Phases of  Carbon from 0-4TPa, 0-1.3eV 
reproduced because it was trained to do so.

Simple Model, Complex Descriptor

J. Willman et. al. (In Prep)

To be or Not to be Transferrable

C - Planetary impacts, shock 1596 30,000 QuadraticUSF, Willman
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11

L. Stanek et. al. (PoP)

C, V 2021 Metal plasmas 1596 10,000 QuadraticSNL, Wood

• A ‘Local’ potential is ideal for a narrow phase 
space, force matching IAP have done this for 
decades.

• Is pressure, temperature, composition a proper 
definition of  training space of  ML-IAP?

To be or Not to be Transferrable

Simple Model, Complex Descriptor • (red) IAP Trained at T=1eV, evaluated at T=1eV
• (blue) IAP Trained at T=1eV, evaluated at T=5eV
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L. Stanek et. al. (PoP)

C, V 2021 Metal plasmas 1596 10,000 QuadraticSNL, Wood

• A ‘Local’ potential is ideal for a narrow phase 
space, force matching IAP have done this for 
decades.

• Is pressure, temperature, composition a proper 
definition of  training space of  ML-IAP?

To be or Not to be Transferrable

Simple Model, Complex Descriptor • (red) IAP Trained at T=1eV, evaluated at T=1eV
• (blue) IAP Trained at T=1eV, evaluated at T=5eV
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L. Stanek et. al. (PoP)

C, V 2021 Metal plasmas 1596 10,000 QuadraticSNL, Wood

• A ‘Local’ potential is ideal for a narrow phase 
space, force matching IAP have done this for 
decades.

• Is pressure, temperature, composition a proper 
definition of  training space of  ML-IAP?

To be or Not to be Transferrable

Simple Model, Complex Descriptor • (red) IAP Trained at T=5eV, evaluated at T=5eV
• (blue) IAP Trained at T=5eV, evaluated at T=1eV
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L. Stanek et. al. (PoP)

C, V 2021 Metal plasmas 1596 10,000 QuadraticSNL, Wood

• A ‘Local’ potential is ideal for a narrow phase 
space, force matching IAP have done this for 
decades.

• Is pressure, temperature, composition a proper 
definition of  training space of  ML-IAP?

To be or Not to be Transferrable

Simple Model, Complex Descriptor • (red) IAP Trained at T=5eV, evaluated at T=5eV
• (blue) IAP Trained at T=5eV, evaluated at T=1eV



Environment of Machine Learning Techniques15

Physically 
Motivated

Data-Science 
Motivated

Non-Linear 
Optimization Kernel Methods Convolutional

Neural Networks
Structured

Neural Networks

SNAP GAPMTP HIP-NN SchNet Deep-MDBLAST-ML

^ Credit to Y. Zou, X. Li, C. Chen and S.P. Ong 

90/10 
train/test

https://github.com/materialsvirtuallab/mlearn

https://github.com/materialsvirtuallab/mlearn
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V(x) = − H(x, y) ± S(x)
Pseudo-
potential

Cross-
entropy

Self-
entropy

Self-entropy landscape of  one particle in a model system 
with one descriptor: the average interatomic distance

Entropy Maximizing Training Sets

• Self-entropy & cross entropy pseudo-potential. Maximize 
descriptor diversity over the whole training set. Prevent 
‘bad’ configurations with strong short range repulsion.

• Generated 300,000 configurations of  Tungsten in DFT, 
one of  the largest training set ever assembled

Scalable Training Generation
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V(x) = − H(x, y) ± S(x)
Pseudo-
potential

Cross-
entropy

Self-
entropy

Self-entropy landscape of  one particle in a model system 
with one descriptor: the average interatomic distanceJ. Chem. Phys. 153, 094110 (2020)

Entropy Maximizing Training Sets

• Self-entropy & cross entropy pseudo-potential. Maximize 
descriptor diversity over the whole training set. Prevent 
‘bad’ configurations with strong short range repulsion.

• Generated 300,000 configurations of  Tungsten in DFT, 
one of  the largest training set ever assembled

Scalable Training Generation

• Applicable to any descriptor, not glued to SNAP in 
particular

• Prevents “holes” in descriptor space

• Finding configs is fast and scalable

Advantages



18 Model Form Selection

• ‘Simple’ training sets can be captured by nearly all 
model forms

• How should you choose your model form based on 
the generated training?

Which Model, Which Training

Training
Testing
Validation



19 Model Form Selection

• ‘Simple’ training sets can be captured by nearly all 
model forms

• How should you choose your model form based on 
the generated training?

Which Model, Which Training

Training
Testing
Validation

Diversity Maximized

Physics Informed

• Comparing the entropy maximized training to the 
hand constructed training of  Wood et. al. PRB 2019

• Automated, entropy maximized training contains 
descriptor space of  hand tuned set.

• ‘Real’ correlations in descriptors will be lacking

Physical training, or Entropy Maximized



20 Comparing Model Complexity

Figure 1: Schematic representation of ML descriptors encod-
ing the local environment of an atom. All atoms within the
radial cuto� (dashed line, X) are used to generate the descrip-
tors, represented as �ngerprints here. The atomic energy is
expressed as a linear or nonlinear function of the descrip-
tors, with parameters that are adjusted during training to
minimize error w.r.t. DFT data.

Cluster Expansion (ACE) family of descriptors each with a particu-
lar choice of radial basis.[28] A recent comparison of the leading
ML-IAP methodologies (including both NN and kernel-based meth-
ods) by an independent group showed that SNAP, GAP, and MTP
(i.e. all kernel-based methods) provided the best balance between
computational cost and accuracy[51].

The Spectral NeighborhoodAnalysis Potential (SNAP), pioneered
by our team, is one such Pareto optimal (accuracy versus compu-
tational cost) ML-IAP which uses bispectrum components of the
local neighbor density projected onto a basis of hyperspherical
harmonics in four dimensions as descriptors, pictorially captured
in Fig. 1. We use the quadratic form of SNAP for carbon, in which
the atomic energy ⇢8(#�% for an atom 8 is expressed as a sum of
the bispectrum components B8 for that atom (see Section 5) and
quadratic products of these descriptors, weighted by regression
coe�cients

⇢8(#�% (r
#
) = # · B8 +

1
2
B8 · " · B8 (1)

where the symmetric matrix " and the vector # are constant linear
coe�cients whose values are trained to reproduce energies and
forces obtained from DFT training structures. Similarly, the forces
on each atom : are expressed in terms of the derivative of atomic
energies with respect to the position of atom : , where # is the total
number of atoms in the structure

F:(#�% = � r:

#’
8=1

⇢8(#�% = �

#’
8=1

⇣
# + B8 · "

⌘
·
mB8

mr:
(2)

Training of the SNAP ML-IAP for carbon was performed iter-
atively utilizing the DAKOTA optimization package[1], wherein
SNAP prediction errors were minimized with respect to DFT data.
The " and # coe�cients were determined by weighted linear re-
gression minimizing the SNAP predicted energies and atomic forces
relative to a database of DFT calculations. This resulted in a robust
IAP over an astounding pressure and temperature range (0-50Mbars
and 300-20,000 K), far exceeding the capability of any empirical
IAP.

The computational bottleneck in any MD simulation is the evalu-
ation of the forces. In the case of SNAP (Eq. 2), this cost is dominated
by the evaluation of the bispectrum components B8 for each atom,
as well as the associated derivatives w.r.t. the positions of neighbor
atoms mB8/mr: . In comparison to empirical IAP, nearly all ML-IAP
are more computationally expensive given the complexity in the
descriptor de�nitions, thus total atom counts and simulation times
are sacri�ced for the improved accuracy.

In previous work, we have demonstrated that kernel-based meth-
ods such as SNAP can uniquely take advantage of accelerator de-
vices by exposingmultiple levels of parallelism in the computational
kernel that evaluates the gradients of descriptors needed for the
MD force calculation. Trott et al. developed an early CUDA imple-
mentation of SNAP that achieved good computational e�ciency
on the NVIDIA K20x GPU. That work also demonstrated the ex-
cellent scalability of machine-learning potentials, allowing an MD
simulation to run on all of the Titan machine (18,688 GPUs) with
only 13 atoms/GPU.[45]

For comparison with other state of the art ML-IAP, in addition
to the FLOP rate, a universal normalized metric for MD simulation
throughput must be used. Namely, the performance of an MD simu-
lation consisting of #0C><B simulated using #=>34B and completing
#BC4?B within )B8< seconds is

#0C><B

106
#BC4?B

#=>34B ⇥)B8<
(3)

and is reported in units of Matom-steps/node-s herein. Having both
of these metrics, one for computational intensity and the other
for simulation performance, is important when comparing MD
simulations across various system sizes, hardware types, varied
number of nodes, simulation time and disparate IAPs used.

Recently DeepMD [20], a NN based ML-IAP, reported 8.1 · 10�10
s/atom-step for 100 timesteps with ⇠127 million Cu atom on 4560
Summit nodes. The equivalent MD performance as de�ned in Eq. 3
is 0.27 Matom-steps/node-s, which currently stands as the best
computational performance of any NNML-IAP at this scale [26]. By
comparison, our SNAP MD simulations reported in this paper have
achieved an MD performance of 5.92 Matom-steps/node-s while
simulating ⇠20 billion carbon atoms on the full Summit machine
(4650 nodes),which is 22x higher than theMDperformance of
DeepMD. The next section details the algorithmic improvements
that provided this performance gain.

5 INNOVATIONS REALIZED
Here we present the algorithmic and architecture speci�c optimiza-
tions that were made to SNAP in order to improve the throughput
on newer generation CPUs and GPUs. The SNAP energy and forces
are expressed as a basis expansion in bispectrum components (Eq. 1,
2) up to an upper limit in the angular momentum quantum number
� , de�ned below. Exploitation of a symmetry relation in the bis-
pectrum components reduced the computational complexity from
O(� 7) to O(� 5), giving an order of magnitude speedup on CPUs
[43]. This version of SNAP was ported to run on GPUs in LAMMPS
and is the version that we took as our starting point. [21].

As shown in the equations below, SNAP consists of many irregu-
larly structured, deeply nested loops with small, varying loop sizes,

3

• ‘Simple’ training sets can be captures by nearly all 
model forms

• How should you choose your model form based on 
the generated training?

Which Model, Which Training

Quadratic SNAP:NNs: Step-down, Soft+, 30 inputs, 3k-30k DoF



21 Comparing Model Complexity

True Values

Figure 1: Schematic representation of ML descriptors encod-
ing the local environment of an atom. All atoms within the
radial cuto� (dashed line, X) are used to generate the descrip-
tors, represented as �ngerprints here. The atomic energy is
expressed as a linear or nonlinear function of the descrip-
tors, with parameters that are adjusted during training to
minimize error w.r.t. DFT data.

Cluster Expansion (ACE) family of descriptors each with a particu-
lar choice of radial basis.[28] A recent comparison of the leading
ML-IAP methodologies (including both NN and kernel-based meth-
ods) by an independent group showed that SNAP, GAP, and MTP
(i.e. all kernel-based methods) provided the best balance between
computational cost and accuracy[51].

The Spectral NeighborhoodAnalysis Potential (SNAP), pioneered
by our team, is one such Pareto optimal (accuracy versus compu-
tational cost) ML-IAP which uses bispectrum components of the
local neighbor density projected onto a basis of hyperspherical
harmonics in four dimensions as descriptors, pictorially captured
in Fig. 1. We use the quadratic form of SNAP for carbon, in which
the atomic energy ⇢8(#�% for an atom 8 is expressed as a sum of
the bispectrum components B8 for that atom (see Section 5) and
quadratic products of these descriptors, weighted by regression
coe�cients

⇢8(#�% (r
#
) = # · B8 +

1
2
B8 · " · B8 (1)

where the symmetric matrix " and the vector # are constant linear
coe�cients whose values are trained to reproduce energies and
forces obtained from DFT training structures. Similarly, the forces
on each atom : are expressed in terms of the derivative of atomic
energies with respect to the position of atom : , where # is the total
number of atoms in the structure

F:(#�% = � r:

#’
8=1

⇢8(#�% = �

#’
8=1

⇣
# + B8 · "

⌘
·
mB8

mr:
(2)

Training of the SNAP ML-IAP for carbon was performed iter-
atively utilizing the DAKOTA optimization package[1], wherein
SNAP prediction errors were minimized with respect to DFT data.
The " and # coe�cients were determined by weighted linear re-
gression minimizing the SNAP predicted energies and atomic forces
relative to a database of DFT calculations. This resulted in a robust
IAP over an astounding pressure and temperature range (0-50Mbars
and 300-20,000 K), far exceeding the capability of any empirical
IAP.

The computational bottleneck in any MD simulation is the evalu-
ation of the forces. In the case of SNAP (Eq. 2), this cost is dominated
by the evaluation of the bispectrum components B8 for each atom,
as well as the associated derivatives w.r.t. the positions of neighbor
atoms mB8/mr: . In comparison to empirical IAP, nearly all ML-IAP
are more computationally expensive given the complexity in the
descriptor de�nitions, thus total atom counts and simulation times
are sacri�ced for the improved accuracy.

In previous work, we have demonstrated that kernel-based meth-
ods such as SNAP can uniquely take advantage of accelerator de-
vices by exposingmultiple levels of parallelism in the computational
kernel that evaluates the gradients of descriptors needed for the
MD force calculation. Trott et al. developed an early CUDA imple-
mentation of SNAP that achieved good computational e�ciency
on the NVIDIA K20x GPU. That work also demonstrated the ex-
cellent scalability of machine-learning potentials, allowing an MD
simulation to run on all of the Titan machine (18,688 GPUs) with
only 13 atoms/GPU.[45]

For comparison with other state of the art ML-IAP, in addition
to the FLOP rate, a universal normalized metric for MD simulation
throughput must be used. Namely, the performance of an MD simu-
lation consisting of #0C><B simulated using #=>34B and completing
#BC4?B within )B8< seconds is

#0C><B

106
#BC4?B

#=>34B ⇥)B8<
(3)

and is reported in units of Matom-steps/node-s herein. Having both
of these metrics, one for computational intensity and the other
for simulation performance, is important when comparing MD
simulations across various system sizes, hardware types, varied
number of nodes, simulation time and disparate IAPs used.

Recently DeepMD [20], a NN based ML-IAP, reported 8.1 · 10�10
s/atom-step for 100 timesteps with ⇠127 million Cu atom on 4560
Summit nodes. The equivalent MD performance as de�ned in Eq. 3
is 0.27 Matom-steps/node-s, which currently stands as the best
computational performance of any NNML-IAP at this scale [26]. By
comparison, our SNAP MD simulations reported in this paper have
achieved an MD performance of 5.92 Matom-steps/node-s while
simulating ⇠20 billion carbon atoms on the full Summit machine
(4650 nodes),which is 22x higher than theMDperformance of
DeepMD. The next section details the algorithmic improvements
that provided this performance gain.

5 INNOVATIONS REALIZED
Here we present the algorithmic and architecture speci�c optimiza-
tions that were made to SNAP in order to improve the throughput
on newer generation CPUs and GPUs. The SNAP energy and forces
are expressed as a basis expansion in bispectrum components (Eq. 1,
2) up to an upper limit in the angular momentum quantum number
� , de�ned below. Exploitation of a symmetry relation in the bis-
pectrum components reduced the computational complexity from
O(� 7) to O(� 5), giving an order of magnitude speedup on CPUs
[43]. This version of SNAP was ported to run on GPUs in LAMMPS
and is the version that we took as our starting point. [21].

As shown in the equations below, SNAP consists of many irregu-
larly structured, deeply nested loops with small, varying loop sizes,

3

• ‘Simple’ training sets can be captures by nearly all 
model forms

• How should you choose your model form based on 
the generated training?

Which Model, Which Training

• Both NN and traditional SNAP models use 
bispectrum components as input descriptors

• All (Linear to deep-NNs) show similar 
performance on training set (?!)

Head-to-head Comparison

Quadratic SNAP:NNs: Step-down, Soft+, 30 inputs, 3k-30k DoF
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Quadratic SNAP

True Values

Figure 1: Schematic representation of ML descriptors encod-
ing the local environment of an atom. All atoms within the
radial cuto� (dashed line, X) are used to generate the descrip-
tors, represented as �ngerprints here. The atomic energy is
expressed as a linear or nonlinear function of the descrip-
tors, with parameters that are adjusted during training to
minimize error w.r.t. DFT data.

Cluster Expansion (ACE) family of descriptors each with a particu-
lar choice of radial basis.[28] A recent comparison of the leading
ML-IAP methodologies (including both NN and kernel-based meth-
ods) by an independent group showed that SNAP, GAP, and MTP
(i.e. all kernel-based methods) provided the best balance between
computational cost and accuracy[51].

The Spectral NeighborhoodAnalysis Potential (SNAP), pioneered
by our team, is one such Pareto optimal (accuracy versus compu-
tational cost) ML-IAP which uses bispectrum components of the
local neighbor density projected onto a basis of hyperspherical
harmonics in four dimensions as descriptors, pictorially captured
in Fig. 1. We use the quadratic form of SNAP for carbon, in which
the atomic energy ⇢8(#�% for an atom 8 is expressed as a sum of
the bispectrum components B8 for that atom (see Section 5) and
quadratic products of these descriptors, weighted by regression
coe�cients

⇢8(#�% (r
#
) = # · B8 +

1
2
B8 · " · B8 (1)

where the symmetric matrix " and the vector # are constant linear
coe�cients whose values are trained to reproduce energies and
forces obtained from DFT training structures. Similarly, the forces
on each atom : are expressed in terms of the derivative of atomic
energies with respect to the position of atom : , where # is the total
number of atoms in the structure

F:(#�% = � r:

#’
8=1

⇢8(#�% = �

#’
8=1

⇣
# + B8 · "

⌘
·
mB8

mr:
(2)

Training of the SNAP ML-IAP for carbon was performed iter-
atively utilizing the DAKOTA optimization package[1], wherein
SNAP prediction errors were minimized with respect to DFT data.
The " and # coe�cients were determined by weighted linear re-
gression minimizing the SNAP predicted energies and atomic forces
relative to a database of DFT calculations. This resulted in a robust
IAP over an astounding pressure and temperature range (0-50Mbars
and 300-20,000 K), far exceeding the capability of any empirical
IAP.

The computational bottleneck in any MD simulation is the evalu-
ation of the forces. In the case of SNAP (Eq. 2), this cost is dominated
by the evaluation of the bispectrum components B8 for each atom,
as well as the associated derivatives w.r.t. the positions of neighbor
atoms mB8/mr: . In comparison to empirical IAP, nearly all ML-IAP
are more computationally expensive given the complexity in the
descriptor de�nitions, thus total atom counts and simulation times
are sacri�ced for the improved accuracy.

In previous work, we have demonstrated that kernel-based meth-
ods such as SNAP can uniquely take advantage of accelerator de-
vices by exposingmultiple levels of parallelism in the computational
kernel that evaluates the gradients of descriptors needed for the
MD force calculation. Trott et al. developed an early CUDA imple-
mentation of SNAP that achieved good computational e�ciency
on the NVIDIA K20x GPU. That work also demonstrated the ex-
cellent scalability of machine-learning potentials, allowing an MD
simulation to run on all of the Titan machine (18,688 GPUs) with
only 13 atoms/GPU.[45]

For comparison with other state of the art ML-IAP, in addition
to the FLOP rate, a universal normalized metric for MD simulation
throughput must be used. Namely, the performance of an MD simu-
lation consisting of #0C><B simulated using #=>34B and completing
#BC4?B within )B8< seconds is

#0C><B

106
#BC4?B

#=>34B ⇥)B8<
(3)

and is reported in units of Matom-steps/node-s herein. Having both
of these metrics, one for computational intensity and the other
for simulation performance, is important when comparing MD
simulations across various system sizes, hardware types, varied
number of nodes, simulation time and disparate IAPs used.

Recently DeepMD [20], a NN based ML-IAP, reported 8.1 · 10�10
s/atom-step for 100 timesteps with ⇠127 million Cu atom on 4560
Summit nodes. The equivalent MD performance as de�ned in Eq. 3
is 0.27 Matom-steps/node-s, which currently stands as the best
computational performance of any NNML-IAP at this scale [26]. By
comparison, our SNAP MD simulations reported in this paper have
achieved an MD performance of 5.92 Matom-steps/node-s while
simulating ⇠20 billion carbon atoms on the full Summit machine
(4650 nodes),which is 22x higher than theMDperformance of
DeepMD. The next section details the algorithmic improvements
that provided this performance gain.

5 INNOVATIONS REALIZED
Here we present the algorithmic and architecture speci�c optimiza-
tions that were made to SNAP in order to improve the throughput
on newer generation CPUs and GPUs. The SNAP energy and forces
are expressed as a basis expansion in bispectrum components (Eq. 1,
2) up to an upper limit in the angular momentum quantum number
� , de�ned below. Exploitation of a symmetry relation in the bis-
pectrum components reduced the computational complexity from
O(� 7) to O(� 5), giving an order of magnitude speedup on CPUs
[43]. This version of SNAP was ported to run on GPUs in LAMMPS
and is the version that we took as our starting point. [21].

As shown in the equations below, SNAP consists of many irregu-
larly structured, deeply nested loops with small, varying loop sizes,

3

• ‘Simple’ training sets can be captures by nearly all 
model forms

• How should you choose your model form based on 
the generated training?

Which Model, Which Training

• Both NN and traditional SNAP models use 
bispectrum components as input descriptors

• All (Linear to deep-NNs) show similar 
performance on training set (?!)

Head-to-head Comparison

Quadratic SNAP:NNs: Step-down, Soft+, 30 inputs, 3k-30k DoF
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• Comparing the entropy maximized training to the 
hand constructed W training of  Wood et. al. PRB 
2019

Physical training, or Entropy Maximized
Arch. RMSE [ !"

#$%&
]

1 HL .031

2 HL .043

3 HL .017

4 HL .042

5 HL .033



24 Back to Physics

• Comparing the entropy maximized training to the 
hand constructed W training of  Wood et. al. PRB 
2019

Physical training, or Entropy Maximized
Arch. RMSE [ !"

#$%&
]

1 HL .031

2 HL .043

3 HL .017

4 HL .042

5 HL .033

Q. SNAP .23
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Contact Information:

mitwood@sandia.gov

• The EXAALT project is 
ensuring Exascale-ready MD 
software beyond the length, 
time-scales of  standard MD 

• While harder to quantify, the 
fidelity of  our MD simulations 
needs to be a key consideration 
at the Exascale

• Data-driven interatomic 
potentials (SNAP, SNAP-NN) 
allow for MD predictions of  
challenging material problems.

mailto:mitwood@sandia.gov
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