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Uses of atomistic potentials in metals

Over the past 30 years, atomistic simulations have been demonstrated to be a
powerful tool for developing insight between the electronic scale and mesoscale.

They work well for characterizing:

e Grain boundary structures

e Twinning and martensitic transformations
* Dislocation reactions
* Segregation energies
* Etc.
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Typical limitations of atomistic potentials

Disadvantages:

* Timescale is extremely limited —
cannot characterize diffusion
processes Y/

e Spatial scale is also very limited —
periodic and free surface
simulations generally contain
major deviations from
experimental results because of
scale oSO eI

« Difficult to fit to multiple R
different kinds of properties

* Development of alloy potentials
is very time consuming

Dislocation loops
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Types of atomistic potentials

Simple and efficient potentials:
* Lennard-Jones
e Embedded Atom Method

A little slower, but more accurate:
 MEAM
* MEAM-spline

Potentials designed for covalent bonding:
* ReaxFF

e Tersoff

Machine Learning:

« SNAP
« HDNNP (N2P2)
« QUIP (GAP)

Many other potential types also exist
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Why do we want another one?

* Existing classical potentials have limited accuracy and are time-consuming to fit.

* Machine learning potentials can have much higher accuracy and the fitting can be
streamlined.

* Therefore we have developed rapid artificial neural network (RANN) potentials
Why do we need another kind of Machine Learning potential?

* GAP is very slow
* SNAP is much faster, but has limited complexity due to the lack of hidden layers
* N2P2 was developed concurrently to our approach and is similar
o RANN potentials are usually faster than N2P2
o RANN is more user-friendly than N2P2
* No other existing ML method has screening
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Screening

Pair effects between a central atom and its cos (6°57) = r“"j}- re
neighbors are reduced or eliminated by other resre
neighbors which are in between them.
Our screening implementation is borrowed o
from the MEAM formulation. X — ( T )
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Structural Fingerprints

e Describe local environment in efficient, comprehensive and physically meaningful way
* Reduce dependence on exact number of neighbors
* Enforce ordering invariance and rotation invariance

A, = z (:—;) exP <—a:—:> f(ry)

l

i T
Ak = ijgm(cos 0;;) exP <—“k 4 - 7}) faf(r)

* We use two types of structural fingerprints, which primarily incorporate the effects
of neighbor radial distribution and bond angle respectively

* Exponentially decaying intensity reflects underlying physics

* Physical motivation implies simpler network (fewer necessary inputs and neurons)
and greater transferability

* These fingerprints are very similar to intermediate quantities computed by the
MEAM potential
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Machine | earning in LAMMPS

Machine learning works by having inputs fed Each neuron receives signals from

through a series of “neurons” to produce a neurons in the previous layer which

final output signal are weighted and summed, then
biases the result and feeds it through

"Non-deep" feedforward
neural network an activation function

hidden layer

Zy = Z Wh;idni + By
i

Ap.; = Inputs (Structural fingerprints)
Atomic

Structural '
Energies An;i = gi(Zn;i)

Fingerprints

hidden layer 1 hidden layer 2 hidden layer 3 A y —
~ ~ , n,i

9i( 2 Whn_1;i jAn—1;j + Bn-1;i)

input layer

Each layer may have a different number of
neurons and the number of layers can be varied
depending upon the problem requirements
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The calibration process

The individual weights and biases of each neuron are the fitting parameters for the network

aZn,i _ Z W aAn—l;j
= -
J

1;i,j
OWn_2;jk OWn—2;jk

An;i = gi(Zn}i) dAn;i = dgi(Zn;i)dZn;i

Because of the matrix-based structure of each neuron, the gradients with respect to
all of the weights and biases are easily produced by backpropagation.

The large number of parameters indicates that overfitting is often a problem.
Overfitting is avoided by checking the network performance on data which it was not

trained with.

"Non-deep" feedforward Deep neural network
neural network

hidden layer hidden layer 1 hidden layer 2 hidden layer 3

,-’“j-r-’ut layer

NN
\k}n )

input layer

layer
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ivation of -

The force on atom x in the n direction is defined as the derivative of the system energy
with respect to the n coordinate of atom x’s position

_9E
/. axn

Fy

Using backpropagation, this may be derived analytical through the network

aZn,i aAn—l;j
axn - Z Wn-1,i axn dAp;; = dgi(Zn;i)dZn;i
J

Finally, the derivatives of the structural fingerprints must be obtained

_ i\ Ty n a df(r)
dAg., = zi <E> exP (—a Z) f(ry) (;l ~ + ) )dri

ity d m( Sgi') d ;
homs =B antero) o (e 2 0) (G~ e )
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Making alloy potentials

e Each element has multiple sets of fingerprints depending on
which neighbors are included

Apx = z (:—;) exP <—a:—:> f(r)

S 4} + T']
Ankxy = z gm(co Gij) exP | —ay "
e

i€EX,jEY

)f(n-)f(’”j)

e List of inputs expands from 32 to 104 for two
different networks

* In general, complexity increases like ¢(N?)
(N = number of element types)
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Choice of fingerprints and architecture

Effect of varying 3-body terms and hidden layer size Effect of screening on a single
on calculation error and speed for a Mg potential: fingerprint as the lattice
parameter is scaled:
Kot mi: H#SE 7. Cpin #NN  Training RMSE  Validation RMSE  Calculation speed
*3 4 13 6 049 20 0.90 2.25 21.77 1.0\
3 4 13 § 049 20 0.67 164 15.74 % 0.8
3 4 13 10 049 20 0.69 1.71 10.71 % o
2 4 13 12 025 38 0.89 1.71 5.56 .;i N
2 4 13 12 049 20 1.09 1.05 8.26 :i =
2 4 13 12 070 18 0.93 1.08 934 £ 02
3 4 17 12 025 38 0.80 1.03 5.07 y 3 5
3 4 17 12 049 20 071 138 8.04 Lattice Parameter (A)
3 4 17 12 0.70 18 0.80 1.06 8.75
5 3 20 12 025 38 1.57 2.95 491 The effect Of Screening on
5 320 12 049 20 280 3.08 7.88 computation speed can be positive
5 3 20 12 070 18 2.88 3.10 8.32 or negative, but generally SF)EEdS
MEAM [33] 61963 up potentials with normal cutoff
N2P2 [27] 5.12 radii.
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Functional Form of the Neural
Network Potential for Ti

n =1 through 4, m =0 through 6, k = 1 through 4

The total size of the input layer is 32
= Nypax + (Mpax + Dkpar

T " T
Aon = Z — | exP|—a—]f(r) r, = 2.915
r 7ﬂe T'e

l

7. = 6.75
dr = 0.5
T + T a = 4.65
AO;m,k — Z gm(COS HU) eXp <_ak T'e >f(rl)f(7}) ak — [1 2 4 8]
L]

Architecture:

Input layer: 32 neurons
Hidden Layer 1: 20 neurons
Output Layer: 1 neuron

Activation Functions:
gi(x) = 0.1x + 0.91In(e* + 1)
ga(x) = x

An,i — gi(Zj Wn—l;i,jAn—l;j + Bn—l;i) 681 |n-d|V|duaI VYEIghtS
and biases are fit
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How to use RANN in LAMMPS

. atomtypes:
Input script: s Hg:
Syntax like eam/alloy and many other pairs: &0, cints:mg no:

radialpower_o

pal r_style rann fingerprints:Mg_Mg_Mg:

bondpower_0

palr_Coeff * % potentlal_fllenn Elementl . fingerprintconstants:Mg Mg:radialpower ®:re:

3.1936
fingerprintconstants:Mg_Mg:radialpower_@:rc:
. . 6
POtentIa| flle SyntaX fingerprintconstants:Mg_Mg:radialpower_@:dr:
. . . . 2.8064
The potent|a| f||e IS deS|gned to be human fingerprintconstants:Mg_Mg:radialpower_©:n:
3
1 nsi 1 1 fingerprintconstants:Mg_Mg:radialpower_@:o:
readable. It is divided into sections by Fingerp 99 power_
. fingerprintconstants:Mg_Mg:radialpower_0:alpha:
keywords. 5.52 5.52 5.52 5.52 5.52
fingerprintconstants:Mg_Mg_Mg:bondpower_@:re:
e atomtypes 3.1936
fingerprintconstants:Mg_Mg_Mg:bondpower_0:rc:
6
°
Mass fingerprintconstants:Mg_Mg_Mg:bondpower_@:dr:
. . 2.8064
i flngerp”ntsperelement fingerprintconstants:Mg_Mg Mg:bondpower @:m:
8
° flngerprints fingerprintconstants:Mg_Mg_Mg:bondpower_0:alphak:
1 2 6 9
. . fingerprintconstants:Mg_Mg_Mg:bondpower @:k:
* fingerprintconstants J
. . networklayers:Mg:
* screening (optional) 3
layersize:Mg:0:
) 37
networklayers T rersizeingi:
. 20
i |ayer'SIZ€ layersize:Mg:2:
. 1
o We|ght welght:Mg:0:
-2.854926896534886 1.551245978744016 -5.299486715905226 1.30303239306658
° bias -3.927350992087088 0.806210218127504 -1.428595777065406 -0.168066964538803

-0.728351260519369 -0.157450640068210 5.491434639296052 1.080334461269439
-2.130535923458539 -1.156477049555650 -2.051010848588853 -0.782611130585220

i aCtlvatlonfU nctions -4.606523573915344  -2.387644217672982  -5.576794096713175  -3.318269168403370
. . . -6.292539958097229  18.703592187192875  -2.381500380244950  2.799241528343801
e calibration pa rameters (|gnored) -2.487391034332221  4.405517388343755  -9.491423045727968  8.229571895198635

2.527344035625121 -0.067244382960372 0.170484581466223 1.282379910053745
0.065724915799647 1.113377435138116 -0.573535002947138 1.560506886857219
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Case Example: Single Element Zn

« Two new MEAM potentials for Zn were published in 2018 independently by two different
groups

e Znis a critical alloying element in many Iron, Aluminum and Magnesium materials

* Because of its very high c/a ratio, Zn is very difficult to accurately simulate

* BJ Lee et al’s potential captures the energy difference from fcc to hcp well, but has very bad
lattice parameters and elastic constants

» Dickel et al’s potential captures the lattice parameters and elastic constants well, but
incorrectly predicts fcc as more stable than hcp
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New RANN potential for zinc

potential has:

Accurate c/a ratio

—

In a first for Zn, our new=

-
v

Q.

or

Enc

Accurate GSFE curves

Accurate EV curves
Reasonable Elastic
constants
Reasonable melting
temperature
Accurate thermal

expansion coefficients

including the

expansion anisotropy
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Applications for Ti and Zr
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New potentials for Ti and Zr correctly capture not only melting but also
phase transitions between three solid phases as a function of temperature
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Applications for Mg

« 2" order pyramidal <c+a> slip in Mg is an important plastic mechanism

* Recent understanding has been that the edge dislocation of this mode
spontaneously dissociate, becoming sessile.

* Our new potential shows the dislocations can still migrate at low stress even
after dissociating.

* Arecent N2P2 potential by Stricker et al. confirms the same results

 Other MEAM and EAM potentials for Mg cannot produce this mechanism.
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