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Uses of atomistic potentials in metals 
Over the past 30 years, atomistic simulations have been demonstrated to be a 
powerful tool for developing insight between the electronic scale and mesoscale. 
 
They work well for characterizing: 
• Grain boundary structures 
• Twinning and martensitic transformations 
• Dislocation reactions 
• Segregation energies 
• Etc. 
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Disadvantages: 
• Timescale is extremely limited – 

cannot characterize diffusion 
processes 

• Spatial scale is also very limited – 
periodic and free surface 
simulations generally contain 
major deviations from 
experimental results because of 
scale 

• Difficult to fit to multiple 
different kinds of properties 

• Development of alloy potentials 
is very time consuming 

Typical limitations of atomistic potentials 
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Types of atomistic potentials 

Simple and efficient potentials: 
• Lennard-Jones 
• Embedded Atom Method 

 
A little slower, but more accurate: 
• MEAM 
• MEAM-spline 

 
Potentials designed for covalent bonding: 
• ReaxFF 
• Tersoff 

 
Machine Learning: 
• SNAP 
• HDNNP (N2P2) 
• QUIP (GAP) 

 
 

Many other potential types also exist 
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Why do we want another one? 

• Existing classical potentials have limited accuracy and are time-consuming to fit. 
 

• Machine learning potentials can have much higher accuracy and the fitting can be 
streamlined. 
 

• Therefore we have developed rapid artificial neural network (RANN) potentials 
 

Why do we need another kind of Machine Learning potential? 
 
• GAP is very slow 
• SNAP is much faster, but has limited complexity due to the lack of hidden layers 
• N2P2 was developed concurrently to our approach and is similar 

o RANN potentials are usually faster than N2P2 
o RANN is more user-friendly than N2P2 

• No other existing ML method has screening 
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Screening 
• Pair effects between a central atom and its 

neighbors are reduced or eliminated by other 
neighbors which are in between them. 

• Our screening implementation is borrowed 
from the MEAM formulation. 

Baskes, Materials Chemistry and Physics, 50(2), 152-158, (1997).  
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• Describe local environment in efficient, comprehensive and physically meaningful way 
• Reduce dependence on exact number of neighbors 
• Enforce ordering invariance and rotation invariance 

𝐴𝑛 = 
𝑟𝑖
𝑟𝑒

𝑛

exp −𝛼
𝑟𝑖
𝑟𝑒

𝑖

𝑓 𝑟𝑖  

𝐴𝑚,𝑘 = 𝑔𝑚 cos𝜃𝑖𝑗 exp −𝛼𝑘
𝑟𝑖 + 𝑟𝑗
𝑟𝑒
𝑓 𝑟𝑖 𝑓 𝑟𝑗

𝑖,𝑗

 

• We use two types of structural fingerprints, which primarily incorporate the effects 
of neighbor radial distribution and bond angle respectively 

• Exponentially decaying intensity reflects underlying physics 
• Physical motivation implies simpler network (fewer necessary inputs and neurons) 

and greater transferability 
• These fingerprints are very similar to intermediate quantities computed by the 

MEAM potential 

Structural Fingerprints 
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Machine Learning in LAMMPS 

Structural 
Fingerprints 

Atomic 
Energies 

Machine learning works by having inputs fed 
through a series of “neurons” to produce a 
final output signal 

Each neuron receives signals from 
neurons in the previous layer which 
are weighted and summed, then 
biases the result and feeds it through 
an activation function 

𝐴𝑛,𝑖 =

𝑔𝑖( 𝑊𝑛−1;𝑖,𝑗𝐴𝑛−1;𝑗 + 𝐵𝑛−1;𝑖𝑗 ) 

𝑍1 = 𝑊𝑛;𝑖𝐴𝑛;𝑖 + 𝐵𝑛
𝑖

 

𝐴0;𝑖 = Inputs (Structural fingerprints) 

𝐴𝑛;𝑖 = 𝑔𝑖 𝑍𝑛;𝑖  

Each layer may have a different number of 
neurons and the number of layers can be varied 
depending upon the problem requirements 
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The individual weights and biases of each neuron are the fitting parameters for the network 

𝜕𝑍𝑛,𝑖
𝜕𝑊𝑛−2;𝑗,𝑘 

= 𝑊𝑛−1;𝑖,𝑗
𝜕𝐴𝑛−1;𝑗
𝜕𝑊𝑛−2;𝑗,𝑘 𝑗

 

Because of the matrix-based structure of each neuron, the gradients with respect to 
all of the weights and biases are easily produced by backpropagation. 
 
The large number of parameters indicates that overfitting is often a problem. 
Overfitting is avoided by checking the network performance on data which it was not 
trained with. 

𝐴𝑛;𝑖 = 𝑔𝑖 𝑍𝑛;𝑖  𝑑𝐴𝑛;𝑖 = 𝑑𝑔𝑖 𝑍𝑛;𝑖 𝑑𝑍𝑛;𝑖  

The calibration process 
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Derivation of Atomic Forces 

𝐹𝑥;𝜂 =
𝜕𝐸

𝜕𝑥𝜂
 

The force on atom x in the η direction is defined as the derivative of the system energy 
with respect to the η coordinate of atom x’s position 

Using backpropagation, this may be derived analytical through the network 

𝜕𝑍𝑛,𝑖
𝜕𝑥𝜂  
= 𝑊𝑛−1;𝑖,𝑗

𝜕𝐴𝑛−1;𝑗
𝜕𝑥𝜂  𝑗

 𝑑𝐴𝑛;𝑖 = 𝑑𝑔𝑖 𝑍𝑛;𝑖 𝑑𝑍𝑛;𝑖  

Finally, the derivatives of the structural fingerprints must be obtained 

𝑑𝐴0;𝑛 =  
𝑟𝑖
𝑟𝑒

𝑛

exp −𝛼
𝑟𝑖
𝑟𝑒
𝑓 𝑟𝑖

𝑛

𝑟𝑖
−
𝛼

𝑟𝑒
+
𝑑𝑓(𝑟𝑖)

𝑓(𝑟𝑖)
𝑑𝑟𝑖  

𝑖
 

𝑑𝐴0;𝑚,𝑘 = 𝑔𝑚 cos𝜃𝑖𝑗 exp −𝛼𝑘
𝑟𝑖 + 𝑟𝑗
𝑟𝑒
𝑓 𝑟𝑖 𝑓 𝑟𝑗

𝑑𝑔𝑚(cos 𝜃𝑖𝑗)

𝑔𝑚(cos 𝜃𝑖𝑗)
−
𝛼

𝑟𝑒
+
𝑑𝑓(𝑟𝑖)

𝑓(𝑟𝑖)
𝑖,𝑗

𝑑𝑟𝑖 

𝑑𝑟𝑖=
𝑥𝜂

𝑟𝑖
𝑑𝑥𝜂 
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• Each element has multiple sets of fingerprints depending on 
which neighbors are included 

𝐴𝑛,𝑋 = 
𝑟𝑖
𝑟𝑒

𝑛

exp −𝛼
𝑟𝑖
𝑟𝑒

𝑖∈𝑋

𝑓 𝑟𝑖  

𝐴𝑚,𝑘,𝑋,𝑌 =  𝑔𝑚 cos𝜃𝑖𝑗 exp −𝛼𝑘
𝑟𝑖 + 𝑟𝑗
𝑟𝑒
𝑓 𝑟𝑖 𝑓 𝑟𝑗

𝑖∈𝑋,𝑗∈𝑌

 

• List of inputs expands from 32 to 104 for two 
different networks 

• In general, complexity increases like ℴ 𝑁2  
(N = number of element types) 

Making alloy potentials 
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Choice of fingerprints and architecture 

The effect of screening on 
computation speed can be positive 
or negative, but generally speeds 
up potentials with normal cutoff 
radii.  

Effect of screening on a single 
fingerprint as the lattice 
parameter is scaled: 
 

Effect of varying 3-body terms and hidden layer size 
on calculation error and speed for a Mg potential: 
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Functional Form of the Neural 

Network Potential for Ti 

𝐴0;𝑛 = 
𝑟𝑖
𝑟𝑒

𝑛

exp −𝛼
𝑟𝑖
𝑟𝑒

𝑖

𝑓 𝑟𝑖  

𝐴0;𝑚,𝑘 = 𝑔𝑚 cos𝜃𝑖𝑗 exp −𝛼𝑘
𝑟𝑖 + 𝑟𝑗
𝑟𝑒
𝑓 𝑟𝑖 𝑓 𝑟𝑗

𝑖,𝑗

 

n = 1 through 4, m = 0 through 6, k = 1 through 4 The total size of the input layer is 32 
= 𝑛𝑚𝑎𝑥 + 𝑚𝑚𝑎𝑥 + 1 𝑘𝑚𝑎𝑥 

𝑟𝑒 = 2.915 
𝑟𝑐 = 6.75 
𝑑𝑟 = 0.5 
𝛼 = 4.65 
𝛼𝑘 = 1 2 4 8  

Architecture: 
Input layer: 32 neurons 
Hidden Layer 1: 20 neurons 
Output Layer: 1 neuron 

Activation Functions: 
𝑔𝑖 𝑥 = 0.1𝑥 + 0.9 ln 𝑒

𝑥 + 1   
𝑔2 𝑥 = 𝑥 

𝐴𝑛,𝑖 = 𝑔𝑖( 𝑊𝑛−1;𝑖,𝑗𝐴𝑛−1;𝑗 + 𝐵𝑛−1;𝑖𝑗 ) 681 individual weights 
and biases are fit 
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How to use RANN in LAMMPS 
Input script: 
Syntax like eam/alloy and many other pairs: 
pair_style rann 

pair_coeff * * potential_file.nn Element1 … 

 
Potential file syntax: 
The potential file is designed to be human 
readable. It is divided into sections by 
keywords: 
• atomtypes 
• mass 
• fingerprintsperelement 
• fingerprints 
• fingerprintconstants 
• screening (optional) 
• networklayers 
• layersize 
• weight 
• bias 
• activationfunctions 
• calibrationparameters (ignored) 
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Case Example: Single Element Zn 
• Two new MEAM potentials for Zn were published in 2018 independently by two different 

groups 
• Zn is a critical alloying element in many Iron, Aluminum and Magnesium materials 
• Because of its very high c/a ratio, Zn is very difficult to accurately simulate 
• BJ Lee et al’s potential captures the energy difference from fcc to hcp well, but has very bad 

lattice parameters and elastic constants 
• Dickel et al’s potential captures the lattice parameters and elastic constants well, but 

incorrectly predicts fcc as more stable than hcp 

Case Example: Single Element Zn 
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New RANN potential for zinc 

In a first for Zn, our new 
potential has: 
• Accurate c/a ratio 
• Accurate GSFE curves 
• Accurate EV curves 
• Reasonable Elastic 

constants 
• Reasonable melting 

temperature 
• Accurate thermal 

expansion coefficients 
including the 
expansion anisotropy 

Nitol, Dickel, and Barrett. Comp. Mat. Sci. 188 (2021): 110207. 
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Applications for Ti and Zr 

New potentials for Ti and Zr correctly capture not only melting but also 
phase transitions between three solid phases as a function of temperature 
and pressure! 
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Applications for Mg 

• 2nd order pyramidal <c+a> slip in Mg is an important plastic mechanism 
• Recent understanding has been that the edge dislocation of this mode 

spontaneously dissociate, becoming sessile. 
• Our new potential shows the dislocations can still migrate at low stress even 

after dissociating. 
• A recent N2P2 potential by Stricker et al. confirms the same results 
• Other MEAM and EAM potentials for Mg cannot produce this mechanism. 
 


