REACTER 2.0: Advanced Reaction Constraints and Automated Interaction Typing

Jacob Gissinger* and Kristopher Wise

NASA Langley Research Center *jacob.gissinger@nasa.gov

LAMMPS Workshop Aug. 2021

All Images Credit NASA unless otherwise indicated

What is REACTER?

- A protocol for adjusting topology during classical MD
 - Unique scale for reaction modeling (fast, atomistic simulations)
 - Add/remove specific bonds, angles, dihedrals, and impropers
 - Modify all force field types as well as atomic charges
 - Supports any fixed-valence force field (PCFF, OPLS, etc.)
 - Reaction stabilization
- Parallel implementation in LAMMPS as fix bond/react
 - User inputs: molecule templates of pre- and post-reaction topology
 - A map file relating atoms before and after the reaction

REACTER: A Heuristic Method for Reactive Molecular Dynamics. Gissinger, Jensen & Wise. Macromolecules 53, 22, 9953–9961 (2020).

REACTER: Features added since 2019

- 1) Streamlined input/output formats for reaction templates and data files
 - String-based type labels allow easy creation of simulation-ready molecule templates
 - Eliminates need to match numeric types between data files and reaction templates
- 2) Automatic interaction typing
 - Enabled by alphanumeric type labels that encode atom types
- 3) Advanced reaction constraints
 - Arrhenius, root-mean-square deviation, and custom reaction constraints
- 4) General improvements/features:
 - Use variables for inputs (reaction cutoff, probability and frequency)
 - Use case: define reaction cutoff as a function of extent of reaction
 - Specify reaction as inter- or intramolecular
 - Update molecule IDs after reaction (default)
 - Makes fix bond/react compatible with other fixes, such as fix gcmc
 - Create new atoms/molecules

Beyond explicit reaction templates

- 'Combinatorial explosion' of templates needed when atoms surrounding reaction site are not constant
 - E.g., simple substitution of second and third neighbors required
 Kawagoe et al. to use 33 templates
 - Better solution needed than building a template for each possibility

Three-stage solution: Labels, wildcards, and autotyping

on patterns on the N (Nitrogen) side in the left panel and

Fig. S2. Schematic of reaction patterns on the N (Nitrogen) side in the left panel and on the C (Carbon) side in the right panel.

Labels, wildcards, and autotyping

- Kawagoe et al. example can be reduced to four templates.
 - Type labels: mapping of each numeric type to an alphanumeric type
 - E.g., LAMMPS knows which atoms are 'N1'
 - Similarly, LAMMPS knows which bonds are [N1][C2], etc.
 - Wildcards and autotyping:
 - E.g., use N* for {N1, N2 or N3}
 - Automatically determine the types of new bonds, angles, etc. that involve wildcard atoms

Fig. S2. Schematic of reaction patterns on the N (Nitrogen) side in the left panel and on the C (Carbon) side in the right panel.

Kawagoe, Yoshiaki, et al. "Construction of polydisperse polymer model and investigation of heat conduction: A molecular dynamics study of linear and branched polyethylenimine." *Polymer* 180 (2019).

Type labels: conventions and benefits

- Extra 'Type Labels' section in data file listing the type label mapping
 - Atom types in 'Atoms' section are not replaced directly, to minimize file size for large data files
- Molecule templates are small and benefit more from being human-readable
 - Atom, bond etc. types in 'Types', 'Bonds' etc. section are replaced directly
- Greatly simplifies/accelerates process of creating simulation-ready templates:
 - Automates task of coordinating types between templates and simulation

	In data file
Atom Type Labels	
4	
1 cp	
2 hc	
3 ct	
4 c=2	
	In molecule template
Types	In molecule template
Types 1 cp	In molecule template
	In molecule template
1 cp 2 hc	In molecule template
1 cp 2 hc 3 cp	In molecule template
1 cp 2 hc	In molecule template

Case study: Carbonization reactions

- Starting point: diethynylbenzene polymerized via linear and cyclotrimerization reactions
- End goal: Approximate model of the carbonization and/or graphitization process
- The problem is not tractable using explicit reaction templates
 - Combinatorial explosion when atoms connected to ring may be C or H
- Only one template needed when atoms near edge of template are defined as wildcards

Case study: Nanoribbon formation

 Define carbonization moves from polymerized PAA motifs, as well as ring-closing and Diels-Alder reaction

Ring creation/fusing rearrangement move for the linear Strauss coupling

Case study: Nanoribbon formation

Arrhenius Reaction Constraint

- Uses local temperature to enforce effective activation energy
 - Temperature-dependent Arrhenius equation: $k = A T^n e^{\frac{-E_a}{k_B T}}$
 - Reaction probability is proportional to calculated rate constant

Nylon melt with Arrhenius constraint: 80x80x80 Å 35,000 atoms 10,000 fs Reaction cutoff: 3.5 Å

Simulation box thermostated with a hot half and a cold half

RMSD Reaction Constraint

- Root-mean-square deviation (RMSD): a metric for similarity of molecular structures
- Enforce a maximum RMSD between template and local reaction site atoms
 - Calculated after optimal translation/rotation of pre-reaction template
- Orientation that allows reaction can be empirical or based off QM results
- A step toward more complex energy surfaces for reactive sites

Create Atoms (and their Bonds, etc.)

What else can REACTER be used for?

- Modeling polymerization of photopolymer resins
- Reactive MD revealed the dependence of gel points and cyclic content on various poly- and difunctional acrylates

Karnes *et al.* On the network topology of cross-linked acrylate photopolymers: A molecular dynamics case study. *The Journal of Physical Chemistry B, 124*(41), 9204-9215 (2020).

What else can REACTER be used for?

- Fix bond/react can act on a subset of the simulation, when nonreactive phases are present
- E.g., modeling the in situ
 polymerization of the matrix in
 nanocomposites
- The properties of the interface between polyimides and flattened CNTs depend on the polyimide chemistry (fluorinated vs non-fluorinated)

Patil *et al.* Interfacial characteristics between flattened CNT stacks and polyimides: A molecular dynamics study. *Computational Materials Science*, *185*, 109970 (2020).

Where to learn more?

Visit **www.reacter.org** for:

- Up-to-date features
 - Tutorials
 - Videos
- Links to related material

If you have a cool video or image that utilizes REACTER, send me an email to be added to the gallery

Also, check out the new
AutoMapper tool
(Matt Bone, University of Bristol)
for a streamlined way to create
reaction templates

← → C • reacter.org/tutorial

Outlook: The potential of type labels

- Type labels are invaluable for rapid creation of simulation-ready data files and reaction templates
- Library of reactions or classes of reactions
 - Templates could be applied directly to many force fields via type labels, wildcards and autotyping
- Existing databases, often expressed in SMILES or SMARTS format, can be converted into templates
- Incorporate reaction constraints such as RMSD if known (e.g., via DFT)

∧ edge atoms

Molecule template in library: aa.pre

Types 1 C* 2 O*

3 0*

4 H*

...

In LAMMPS input script

fix 1 all fix bond/react & react rxn1 all 1 0.0 3.0 aa.pre aa.post aa.map

Thank You!

