Development of SNAP Potentials for Fusion Reactor Materials

Mary Alice Cusentino¹, Mitch Wood², and Aidan Thompson²

¹Material, Physical, and Chemical Sciences Center
²Center for Computing Research

2021 LAMMPS Workshop
August 12 2021
Materials for Fusion Energy

- Difficult to develop materials to handle extreme conditions within tokamak
- Large heat loads of 10^{-2} to 20 MW/m3
- High particles fluxes of $\sim 10^{24}$ m$^{-2}$s$^{-1}$ of mixed ion species (H/He/Be/N etc.)
Materials for Fusion Energy

- Difficult to develop materials to handle extreme conditions within tokamak
- Large heat loads of 10^{-20}MW/m^3
- High particles fluxes of $\sim 10^{24} \text{m}^{-2}\text{s}^{-1}$ of mixed ion species (H/He/Be/N etc.)

- Many complex processes that occur at the plasma/material interface that can lead to material degradation

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

![Image](image1.png)

Material Degredation

![Image](image2.png)

W-Be Intermetallics

Be$_{12}$W
Be deposits (surface)

Hydrogen Blisters

![Image](image3.png)

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

Material Degradation

Be12W Intermetallics

Be deposits (surface)

Hydrogen Blisters

Tritium Retention

Effect of He on H Blistering

Effect of Plasma Impurities on Hydrogen Retention

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

Material Degradation

W-Be Intermetallics

Be₁₂W

Be deposits (surface)

Hydrogen Blisters

Effect of Plasma Impurities on Hydrogen Retention

[Kreter et al. Nucl. Fus. 59, 086029 (2019)]

Tritium Retention

Effect of He on H Blistering

SNAP Definition and Work Flow

Model Form

- Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

\[
E_{SNAP}^i = \beta_0 + \sum_{k=1}^{K} \beta_k (B_k^i - B_{k0}^i)
\]

Regression Method

- β vector fully describes a SNAP potential
- Decouples MD speed from training set size

\[
\min(||w \cdot D\beta - T||^2 - \gamma_n ||\beta||^n)
\]

Weights Set of Descriptors DFT Training
SNAP Definition and Work Flow

Model Form

- Energy of atom i expressed as a basis expansion over K components of the bispectrum (B^i_k)

$$E_{SNAP}^i = \beta_0 + \sum_{k=1}^{K} \beta_k (B^i_k - B^i_{k0})$$

Regression Method

- β vector fully describes a SNAP potential
- Decouples MD speed from training set size

$$\min(||w \cdot D\beta - T||^2 - \gamma_n \ ||\beta\ ||^n)$$

Weights Set of Descriptors DFT Training

DFT Training

Set of Descriptors

Weights

Fitting

Hyper-parameters

DFT Reference Data

FitSNAP.py

DAKOTA

LAMMPS

Code available: https://github.com/FitSNAP/FitSNAP

Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

<table>
<thead>
<tr>
<th>Description</th>
<th>N_E</th>
<th>N_F</th>
<th>σ_E</th>
<th>σ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Be:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Deform†</td>
<td>3946</td>
<td>68040</td>
<td>3×10^5</td>
<td>2×10^3</td>
</tr>
<tr>
<td>Equation of State†</td>
<td>1113</td>
<td>39627</td>
<td>2×10^5</td>
<td>4×10^4</td>
</tr>
<tr>
<td>DFT-MD†</td>
<td>3360</td>
<td>497124</td>
<td>7×10^4</td>
<td>6×10^2</td>
</tr>
<tr>
<td>Surface Adhesion</td>
<td>381</td>
<td>112527</td>
<td>2×10^4</td>
<td>9×10^4</td>
</tr>
</tbody>
</table>

† Multiple crystal phases included in this group:

Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

<table>
<thead>
<tr>
<th>Phase</th>
<th>Composition</th>
<th>DFT1</th>
<th>SNAP1</th>
<th>BOP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$_2$</td>
<td>WBe</td>
<td>0.67</td>
<td>0.30</td>
<td>-2.20</td>
</tr>
<tr>
<td>C$_{14}$</td>
<td>WBe$_2$</td>
<td>-0.87</td>
<td>-1.27</td>
<td>-4.20</td>
</tr>
<tr>
<td>C$_{15}$</td>
<td>WBe$_2$</td>
<td>-0.92</td>
<td>-1.15</td>
<td>-4.19</td>
</tr>
<tr>
<td>C$_{16}$</td>
<td>WBe$_2$</td>
<td>-0.90</td>
<td>-1.22</td>
<td>-4.20</td>
</tr>
<tr>
<td>L$_{12}$</td>
<td>WBe$_3$</td>
<td>-0.51</td>
<td>-0.15</td>
<td>-4.58</td>
</tr>
<tr>
<td>D$_2$B</td>
<td>WBe$_{12}$</td>
<td>-0.96</td>
<td>-0.34</td>
<td>-6.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>N_E</th>
<th>N_F</th>
<th>σ_E</th>
<th>σ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Be:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Deform†</td>
<td>3946</td>
<td>68040</td>
<td>$3 \cdot 10^5$</td>
<td>$2 \cdot 10^3$</td>
</tr>
<tr>
<td>Equation of State‡</td>
<td>1113</td>
<td>39627</td>
<td>$2 \cdot 10^5$</td>
<td>$4 \cdot 10^4$</td>
</tr>
<tr>
<td>DFT-MD1</td>
<td>3360</td>
<td>497124</td>
<td>$7 \cdot 10^4$</td>
<td>$6 \cdot 10^2$</td>
</tr>
<tr>
<td>Surface Adhesion</td>
<td>381</td>
<td>112527</td>
<td>$2 \cdot 10^4$</td>
<td>$9 \cdot 10^4$</td>
</tr>
</tbody>
</table>

† Multiple crystal phases included in this group:

Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

<table>
<thead>
<tr>
<th>Description</th>
<th>(N_E)</th>
<th>(N_F)</th>
<th>(\sigma_E)</th>
<th>(\sigma_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Be:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Deform(^\dagger)</td>
<td>3946</td>
<td>68040</td>
<td>3 \times 10^5</td>
<td>2 \times 10^3</td>
</tr>
<tr>
<td>Equation of State(^\dagger)</td>
<td>1113</td>
<td>39627</td>
<td>2 \times 10^5</td>
<td>4 \times 10^4</td>
</tr>
<tr>
<td>DFT-MD(^\dagger)</td>
<td>3360</td>
<td>497124</td>
<td>7 \times 10^4</td>
<td>6 \times 10^2</td>
</tr>
<tr>
<td>Surface Adhesion</td>
<td>381</td>
<td>112527</td>
<td>2 \times 10^4</td>
<td>9 \times 10^4</td>
</tr>
</tbody>
</table>

\(^\dagger\) Multiple crystal phases included in this group:

Be Defect Formation Energies in W (eV)

<table>
<thead>
<tr>
<th>[111] Dumbbell</th>
<th>DFT(^1)</th>
<th>SNAP(^1)</th>
<th>BOP(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>3.11</td>
<td>3.29</td>
<td>-2.00</td>
</tr>
<tr>
<td>Surface Hollow Site</td>
<td>-1.05</td>
<td>-1.39</td>
<td>-3.52</td>
</tr>
<tr>
<td>Tetrahedral</td>
<td>4.13</td>
<td>4.20</td>
<td>-0.28</td>
</tr>
<tr>
<td>[110] Dumbbell</td>
<td>4.86</td>
<td>4.29</td>
<td>-0.03</td>
</tr>
<tr>
<td>Octahedral</td>
<td>3.0</td>
<td>5.11</td>
<td>0.34</td>
</tr>
<tr>
<td>Surface Bridge Site</td>
<td>1.01</td>
<td>0.44</td>
<td>-1.30</td>
</tr>
</tbody>
</table>

W-Be Intermetallic Formation Energies (eV)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Composition</th>
<th>DFT(^1)</th>
<th>SNAP(^1)</th>
<th>BOP(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(_2)</td>
<td>WBe</td>
<td>0.67</td>
<td>0.30</td>
<td>-2.20</td>
</tr>
<tr>
<td>C(_{14})</td>
<td>WBe(_2)</td>
<td>-0.87</td>
<td>-1.27</td>
<td>-4.20</td>
</tr>
<tr>
<td>C(_{15})</td>
<td>WBe(_2)</td>
<td>-0.92</td>
<td>-1.15</td>
<td>-4.19</td>
</tr>
<tr>
<td>C(_{16})</td>
<td>WBe(_2)</td>
<td>-0.90</td>
<td>-1.22</td>
<td>-4.20</td>
</tr>
<tr>
<td>L(_{12})</td>
<td>WBe(_3)</td>
<td>-0.51</td>
<td>-0.15</td>
<td>-4.58</td>
</tr>
<tr>
<td>D(_2)B</td>
<td>WBe(_{12})</td>
<td>-0.96</td>
<td>-0.34</td>
<td>-6.69</td>
</tr>
</tbody>
</table>

Beryllium Deposition Results in Near Surface Mixed Layer

- High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces

Experimentally Observed W-Be Intermetallics

Beryllium Deposition Results in Near Surface Mixed Layer

- High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces
- Formation of disordered mixed materials layer in first 2 nm of surface
- Some intermetallic growth observed within mixed materials layer

Fluence: $1.4 \times 10^{20} \text{ m}^{-2}$

Cusentino, et al. Nucl. Fusion, accepted

Beryllium Deposition Results in Near Surface Mixed Layer

- High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces
- Formation of disordered mixed materials layer in first 2 nm of surface
- Some intermetallic growth observed within mixed materials layer
- However, mixed materials layer appears to be kinetically trapped at MD time scales

Experimentally Observed W-Be Intermetallics

Fluence: 1.4 x 10^{20} m^{-2}
Cumulative He Implantation in W and W-Be at $2.5 \times 10^{19} \text{ m}^{-2}$

- Crystalline W
- Amorphous W-Be (Blue: He, Purple: Be, Gray: W)
- WBe$_2$ C14 Structure (Increasing Time)
Cumulative He Implantation in W and W-Be at 2.5×10^{19} m$^{-2}$

Crystalline W

Amorphous W-Be

- **Blue:** He
- **Purple:** Be
- **Gray:** W

WBe$_2$ C14 Structure

- **Tungsten:** Larger He clusters distributed throughout simulation cell
Cumulative He Implantation in W and W-Be at 2.5×10^{19} m$^{-2}$

Crystalline W

- Larger He clusters distributed throughout simulation cell

Amorphous W-Be

- Blue: He
- Purple: Be
- Gray: W

WBe$_2$ C14 Structure

- Laves/Deposited Layer: Smaller He clusters mostly located near the surface

Increasing Time
Extending SNAP for W-H and W-N

- Additional training data needed

- Pure H/N data:
 - Dimers, trimers, DT-MD of gas dimers

W: Grey H: Green N: Pink
Extending SNAP for W-H and W-N

- Additional training data needed
- Pure H/N data:
 - Dimers, trimers, DT-MD of gas dimers
- W-H and W-N data:
 - Bulk defects, monomers/dimers on surface, liquids
 - W_xN_y bulk configurations
Extending SNAP for W-H and W-N

• Additional training data needed

• Pure H/N data:
 • Dimers, trimers, DT-MD of gas dimers

• W-H and W-N data:
 • Bulk defects, monomers/dimers on surface, liquids
 • W_xN_y bulk configurations

• Additional objective functions added:
 • W-H/N bulk defect formation energies
 • H/N surface adsorption energies
 • W_xN_y cohesive energies
Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form
Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form
Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form

Poor Clustering Behavior

Hydrogen Binding Curves

Poor Energetics

Atoms colored by potential energy
- Green is nominal H2 energy
- Reproduces correct binding curves
Changes to Fitting Results in Better Hydrogen and Nitrogen Potentials

- Modifications to fitting workflow yielded better results in reproducing correct gas species behavior
- Adjustments included:
 - Only including training data near potential energy well
 - Making radial cutoff much shorter (1.5 Å for H and 2.0 Å for N) compared to W (4.6 Å)
 - Adding extra objective function for dynamics behavior
 - Adjusted ZBL cutoff
 - Adjusted objective function for binding curves
Tradeoff Between Surface and Bulk Behavior

Potential for H on Surfaces

<table>
<thead>
<tr>
<th></th>
<th>DFT (eV)</th>
<th>SNAP (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100) Ads. Site Bridge</td>
<td>Bridge</td>
<td></td>
</tr>
<tr>
<td>(110) Ads. Energy -0.96</td>
<td>-0.95</td>
<td></td>
</tr>
<tr>
<td>(100) Ads. Site Hollow</td>
<td>Hollow</td>
<td></td>
</tr>
<tr>
<td>(110) Ads. Energy -0.75</td>
<td>-0.43</td>
<td></td>
</tr>
</tbody>
</table>

NEB Surface Hop

Top-down Surface View
Tradeoff Between Surface and Bulk Behavior

Potential for H on Surfaces

<table>
<thead>
<tr>
<th></th>
<th>DFT (eV)</th>
<th>SNAP (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100) Ads. Site</td>
<td>Bridge</td>
<td>Bridge</td>
</tr>
<tr>
<td>(110) Ads. Energy</td>
<td>-0.96</td>
<td>-0.95</td>
</tr>
<tr>
<td>(100) Ads. Site</td>
<td>Hollow</td>
<td>Hollow</td>
</tr>
<tr>
<td>(110) Ads. Energy</td>
<td>-0.75</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

Potential for H in Bulk

<table>
<thead>
<tr>
<th></th>
<th>DFT</th>
<th>SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>E^f_{Tot} (eV)</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>E^f_{Tot} (eV)</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>E^f_{Sub} (eV)</td>
<td>4.08</td>
<td>4.02</td>
</tr>
</tbody>
</table>
Tradeoff Between Surface and Bulk Behavior

Potential for H on Surfaces

<table>
<thead>
<tr>
<th>Surface</th>
<th>DFT (eV)</th>
<th>SNAP (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100) Ads. Site</td>
<td>Bridge</td>
<td>Bridge</td>
</tr>
<tr>
<td>(110) Ads. Energy</td>
<td>-0.96</td>
<td>-0.95</td>
</tr>
<tr>
<td>(100) Ads. Site</td>
<td>Hollow</td>
<td>Hollow</td>
</tr>
<tr>
<td>(110) Ads. Energy</td>
<td>-0.75</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

Potential for H in Bulk

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>DFT (eV)</th>
<th>SNAP (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_f^{Tet} (eV)</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>E_f^{Oct} (eV)</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>E_f^{Sub} (eV)</td>
<td>4.08</td>
<td>4.02</td>
</tr>
</tbody>
</table>

NEB Surface Hop

Top-down Surface View

![Top-down Surface View](image1)

NEB Bulk Hop

![NEB Bulk Hop](image2)

Bulk Tungsten

![Bulk Tungsten](image3)
Tradeoff Between Surface and Bulk Behavior

Potential for H on Surfaces

<table>
<thead>
<tr>
<th>(100) Ads. Site</th>
<th>Bridge</th>
<th>Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(110) Ads. Energy</td>
<td>-0.96</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(100) Ads. Site</th>
<th>Bridge</th>
<th>Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(110) Ads. Energy</td>
<td>-3.54</td>
<td>-4.94</td>
</tr>
</tbody>
</table>

Potential for H in Bulk

<table>
<thead>
<tr>
<th>(100) Ads. Site</th>
<th>Bridge</th>
<th>Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(110) Ads. Energy</td>
<td>0.88</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(100) Ads. Site</th>
<th>Bridge</th>
<th>Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(110) Ads. Energy</td>
<td>1.26</td>
<td>1.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(100) Ads. Site</th>
<th>Bridge</th>
<th>Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(110) Ads. Energy</td>
<td>4.08</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Run DFT

- **Add To Training Data**

NEB Surface View

- **Top-down Surface View**
- **Bulk Tungsten**
- **NEB Bulk Hop**
- **NEB Surface Hop**

- **Bad** Surface
- **Bad** Bulk
Summary

- SNAP is a versatile ML interatomic potential that has been applied to a variety of materials including materials for fusion energy.
- A W-Be SNAP potential has been developed and used to study Be implantation in W and extended to simulation He implantation W-Be materials.
- The current SNAP potential is being extended for W-H and W-N and SNAP can reproduce gas species behavior both in vacuum and in metals.
- Future work entails the development of one W-Be-H-He-N potential for studying fusion energy materials.

Contact: mcusent@sandia.gov
Backup Slides
MD Approximations Change Over Time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lennard-Jones, Hard Sphere, Coulomb, Bonded</td>
<td>Stillinger-Weber, Tersoff, Embedded Atom Method</td>
<td>REBO, BOP, COMB, ReaxFF</td>
<td>GAP, SNAP, NN,…</td>
</tr>
</tbody>
</table>

GPU Timings

- **EAM Copper**
 - 4M atoms
 - Speed: 80 ns/day
 - Best Speed: 4 ns/day
 - 30k atoms/node

- **SNAP Tungsten**
 - 4M atoms
 - Speed: 400 ns/day (20x faster)

Resources are limited, which is your best choice?

![Graph showing computational cost vs. test error]

What Makes a Machine Learned Interatomic Potential?

Training Data
- Generated using quantum methods
- Can include:
 - Energies
 - Forces
 - Stresses
- Variety of atomic configurations
 - Bulk structures, liquids, surfaces, defects, etc.

Descriptor
- Describes the local atomic environment
- Requirements
 - Rotation/Translation/. Permutation invariant
 - Equivariant forces
 - Smooth differentiable
 - Extensible
- Some Examples
 - Bispectrum, SOAP, ACE, Moment Tensors, etc.

Regression Method
- Linear regression
- Kernel ridge regression
- Gaussian process
- Non-linear optimization
- Neural Networks

SNAP
- Energies, forces, and stresses from DFT
- Bispectrum component descriptors
- Linear regression
Testing Potentials: Hydrogen Implantation in Tungsten

- Interested in studying hydrogen implantation in tungsten and how it interacts within the material, especially with other plasma species or defects
- Initial testing of W-H SNAP potentials for hydrogen implantations
- 100 eV H implanted every 10 ps at 1000 K for (100) W surface
- Hydrogen correctly initially resides at tetrahedral interstitial site
- Diffusion barrier is somewhat high so diffusion is lower than expected
- EAM does not predict correct surface behavior and desorbs as H atoms as opposed to H₂ molecules