

Development of SNAP Potentials for Fusion Reactor Materials

Mary Alice Cusentino¹, Mitch Wood², and Aidan Thompson² ¹Material, Physical, and Chemical Sciences Center

²Center for Computing Research

2021 LAMMPS Workshop

August 12 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- ² Materials for Fusion Energy
- Difficult to develop materials to handle extreme conditions within tokamak
- •Large heat loads of $10-20 \text{ MW/m}^3$
- High particles fluxes of ~10²⁴ m⁻²s⁻¹ of mixed ion species (H/He/Be/N etc.)

Beryllium First Wall

Tungsten Divertor

iter.org

GD

³ Materials for Fusion Energy

- Difficult to develop materials to handle extreme conditions within tokamak
- •Large heat loads of $10-20 \text{ MW/m}^3$
- High particles fluxes of ~10²⁴ m⁻²s⁻¹ of mixed ion species (H/He/Be/N etc.)

Beryllium First Wall

Tungsten Divertor

iter.org

• Many complex processes that occur at the plasma/material interface that can lead to material degradation

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158

W-Be Intermetallics

Be₁₂W

W

4

Be deposits (surface)

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

Material Degredation

Kajita, et al. Nucl. Fus. 471, 886-890 (2007)

Hydrogen Blisters

Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158

W-Be Intermetallics

Be₁₂W

W

5

Be deposits (surface)

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

Material Degredation

Kajita, et al. Nucl. Fus. 471, 886-890 (2007)

Hydrogen Blisters

Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)

Tritium Retention

Effect of He on H Blistering

Ueda, et. al. J. Nucl. Mater. 386-388 (2009) 725-728

Effect of Plasma Impurities on Hydrogen Retention

Kreter, et al. Nucl. Fus. 59, 086029 (2019)

Plasma Material Interactions in Tungsten

Helium Fuzz Growth

6

Be₁₂W

Material Degredation

Kajita, et al. Nucl. Fus. 471, 886-890 (2007)

Hydrogen Blisters

Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)

Tritium Retention

Effect of He on H Blistering

Ueda, et. al. J. Nucl. Mater. 386-388 (2009) 725-728

Effect of Plasma Impurities on Hydrogen Retention

Kreter, et al. Nucl. Fus.. 59, 086029 (2019)

W-Be Intermetallics

Be deposits (surface)

Kajita, et al. 1 Mater, 418, (2011)

SNAP Definition and Work Flow

Model Form

7

• Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

$$E_{SNAP}^{i} = \beta_{0} + \sum_{k=1}^{K} \beta_{k} (B_{k}^{i} - B_{k0}^{i})$$

Regression Method

- *B* vector fully describes a SNAP potential
- Decouples MD speed from training set size

$$\min(||\mathbf{w} \cdot D\boldsymbol{\beta} - T||^2 - \gamma_n ||\boldsymbol{\beta}||^n)$$

Weights Set of Descriptors DFT Training

SNAP Definition and Work Flow

Model Form

8

• Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

$$E_{SNAP}^{i} = \beta_0 + \sum_{k=1}^{K} \beta_k (B_k^{i} - B_{k0}^{i})$$

Regression Method

- *B* vector fully describes a SNAP potential
- Decouples MD speed from training set size

Code available: https://github.com/FitSNAP/FitSNAP

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305

, Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3\cdot10^{5}$	$2\cdot 10^3$
Equation of State [†]	1113	39627	$2\cdot 10^5$	$4\cdot 10^4$
$DFT-MD^{\dagger}$	3360	497124	$7\cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2 \cdot 10^4$	$9\cdot\mathbf{10^4}$
† Multiple crystal	phases	included	l in this g	group:
B ₂	-12		C ₁₄	
C ₁₅	C ₃₆		D ₂ b	

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305
 C. Björkas et al 2010 J. Phys.: Condens. Matter 22 352206

¹⁰ Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3\cdot10^{5}$	$2 \cdot 10^3$
Equation of State [†]	1113	39627	$2\cdot 10^5$	$4\cdot 10^4$
$DFT-MD^{\dagger}$	3360	497124	$7\cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2 \cdot 10^4$	$9\cdot\mathbf{10^4}$
† Multiple crystal	phases	included	l in this g	group:
B ₂	-12		C ₁₄	
C ₁₅	C ₃₆		D ₂ b	

[1] M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305[2] C. Björkas et al 2010 J. Phys.: Condens. Matter 22 352206

			-	. ,
Phase	Composition	DFT ¹	SNAP ¹	BOP ²
B ₂	WBe	0.67	0.30	-2.20
C ₁₄	WBe ₂	-0.87	-1.27	-4.20
C ₁₅	WBe ₂	-0.92	-1.15	-4.19
C ₁₆	WBe ₂	-0.90	-1.22	-4.20
L ₁₂	WBe ₃	-0.51	-0.15	-4.58
D_2B	WBe ₁₂	-0.96	-0.34	-6.69

W-Be Intermetallic Formation Energies (eV)

¹¹ Tungsten-Beryllium SNAP Fitting

- Initially fit SNAP potential for pure elements
- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3\cdot10^{5}$	$2 \cdot 10^3$
Equation of State [†]	1113	39627	$2\cdot 10^5$	$4\cdot 10^4$
$DFT-MD^{\dagger}$	3360	497124	$7\cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2 \cdot 10^4$	$9\cdot\mathbf{10^4}$
† Multiple crystal	phases	included	l in this g	group:
B ₂	-12		C ₁₄	
C ₁₅	C ₃₆		D ₂ b	

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305
 C. Björkas et al 2010 J. Phys.: Condens. Matter 22 352206

W-Be Intermetallic Formation Energies (eV)

Phase	Composition	DFT ¹	SNAP ¹	BOP ²
B ₂	WBe	0.67	0.30	-2.20
C ₁₄	WBe ₂	-0.87	-1.27	-4.20
C ₁₅	WBe ₂	-0.92	-1.15	-4.19
C ₁₆	WBe ₂	-0.90	-1.22	-4.20
L ₁₂	WBe ₃	-0.51	-0.15	-4.58
D_2B	WBe ₁₂	-0.96	-0.34	-6.69

Be Defect Formation Energies in W (eV)

	DFT ¹	SNAP ¹	BOP ²
[111] Dumbbell	4.30	3.66	0.67
Substitution	3.11	3.29	-2.00
Surface Hollow Site	-1.05	-1.39	-3.52
Tetrahedral	4.13	4.20	-0.28
[110] Dumbbell	4.86	4.29	-0.03
Octahedral	3.0	5.11	0.34
Surface Bridge Site	1.01	0.44	-1.30

Beryllium Deposition Results in Near Surface Mixed Layer

• High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces

Experimentally Observed W-Be Intermetallics

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

Beryllium Deposition Results in Near Surface Mixed Layer

- High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces
- Formation of disordered mixed materials layer in first 2 nm of surface

• Some intermetallic growth observed within mixed materials layer

Experimentally Observed W-Be Intermetallics

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

Fluence: 1.4 x 10²⁰ m⁻²

Cusentino, et al. Nucl. Fusion, accepted

Beryllium Deposition Results in Near Surface Mixed Layer

14

Cusentino, et al. Nucl. Fusion, accepted

- High energy (75 eV) and low energy (0 eV) beryllium deposition on tungsten surfaces
- Formation of disordered mixed materials layer in first 2 nm of surface

- Some intermetallic growth observed within mixed materials layer
- However, mixed materials layer appears to be kinetically trapped at MD time scales

Experimentally Observed W-Be Intermetallics

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

Cumulative He Implantation in W and W-Be at 2.5 x 10^{19} m⁻²

Increasing TIme

15

Amorphous W-Be

Blue: He Purple: Be Gray: W

Cumulative He Implantation in W and W-Be at 2.5 x 10^{19} m⁻²

Increasing TIme

16

Amorphous W-Be

Blue: He Purple: Be Gray: W

WBe₂ C14 Structure

Cumulative He Implantation in W and W-Be at 2.5 x 10^{19} m⁻²

•

¹⁸ Extending SNAP for W-H and W-N

- Additional training data needed
- Pure H/N data:
 - Dimers, trimers, DT-MD of gas dimers

W: Grey H: Green N: Pink

¹⁹ Extending SNAP for W-H and W-N

- Additional training data needed
- Pure H/N data:
 - Dimers, trimers, DT-MD of gas dimers
- W-H and W-N data:
 - Bulk defects, monomers/dimers on surface, liquids
 - $W_x N_y$ bulk configurations

Surface Structures

Bulk Structures

W: Grey H: Green N: Pink

²⁰ Extending SNAP for W-H and W-N

- Additional training data needed
- Pure H/N data:
 - Dimers, trimers, DT-MD of gas dimers
- W-H and W-N data:
 - Bulk defects, monomers/dimers on surface, liquids
 - $W_x N_y$ bulk configurations
- Additional objective functions added:
 - W-H/N bulk defect formation energies
 - H/N surface adsorption energies
 - W_xN_y cohesive energies

Surface Structures

Bulk Structures

²¹ Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form

²² Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form

Poor Clustering Behavior

²³ Challenges in Developing W-H and W-N SNAP Potentials

- Have never used SNAP for gaseous species before
- Hydrogen and nitrogen training data is also more sparse compared to crystalline structures i.e. tungsten
- Difficult resides in how to get correct gas behavior (like forming dimers but not trimers) without inherent physics built-in to potential form

Potential Contracting Conversion Inverse Conversion of the second secon

1.0

0.5

0.0

1.5

r (Å)

2.0

3.0

Hydrogen Binding Curves

- Green is nominal H2 energy
- Reproduces correct binding curves

Poor Clustering Behavior

Changes to Fitting Results in Better Hydrogen and Nitrogen Potentials

- Modifications to fitting workflow yielded better results in reproducing correct gas species behavior
- Adjustments included:

24

- Only including training data near potential energy well
- Making radial cutoff much shorter (1.5 Å for H and 2.0 Å for N) compared to W (4.6 Å)
- Adding extra objective function for dynamics behavior
- Adjusted ZBL cutoff
- Adjusted objective function for binding curves

h

Potential for H on Surfaces

	DFT (eV)	SNAP (eV)
(100) Ads. Site	Bridge	Bridge
(110) Ads. Energy	-0.96	-0.95
(100) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-0.75	-0.43

NEB Surface Hop

Top-down Surface View

26

Potential for H on Surfaces

	DFT (eV)	SNAP (eV)
(100) Ads. Site	Bridge	Bridge
(110) Ads. Energy	-0.96	-0.95
(100) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-0.75	-0.43

NEB Surface Hop

Potential for H in Bulk

	DFT	SNAP
$E_f^{Tet}(eV)$	0.88	0.88
$E_f^{Oct}(eV)$	1.26	1.26
$E_f^{Sub}(eV)$	4.08	4.02

Bulk Tungsten

27

Potential for H on Surfaces

	DFT (eV)	SNAP (eV)
(100) Ads. Site	Bridge	Bridge
(110) Ads. Energy	-0.96	-0.95
(100) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-0.75	-0.43

NEB Surface Hop

	DFT	SNAP
$E_{f}^{Tet}(eV)$	0.88	8.89
$E_f^{Oct}(eV)$	1.26	9.34
$E_{f}^{Sub}(eV)$	4.08	3.87

Potential for H in Bulk

	DFT	SNAP
$E_f^{Tet}(eV)$	0.88	0.88
$E_f^{Oct}(eV)$	1.26	1.26
$E_{f}^{Sub}(eV)$	4.08	4.02

Bulk Tungsten

	DFT (eV)	SNAP (eV)
(100) Ads. Site	Bridge	Hollow
(110) Ads. Energy	-0.96	-3.54
(100) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-0.75	-4.94

Potential for H on Surfaces

28

Potential for H in Bulk

29 Summary

- SNAP is a versatile ML interatomic potential that has been applied to a variety of materials including materials for fusion energy
- A W-Be SNAP potential has been developed and used to study Be implantation in W and extended to simulation He implantation W-Be materials
- The current SNAP potential is being extended for W-H and W-N and SNAP can reproduce gas species behavior both in vacuum and in metals
- Future work entails the development of one W-Be-H-He-N potential for studying fusion energy materials

Office of Science

250

of Atoms 120

Number 20

30 Backup Slides

³¹ MD Approximations Change Over Time

Training Data

- Generated using quantum methods
- Can include:

32

- Energies
- Forces
- Stresses
- Variety of atomic configurations
 - Bulk structures, liquids,
 surfaces, defects, etc.

<u>Descriptor</u>

- Describes the local atomic environment
- Requirements
 - Rotation/Translation/. Permutation invariant
 - Equivariant forces
 - Smooth differentiable
 - Extensible
- Some Examples
 - Bispectrum, SOAP, ACE, Moment Tensors, etc.

Regression Method

- Linear regression
- Kernel ridge regression
- Gaussian process
- Non-linear optimization
- Neural Networks

<u>SNAP</u>

- Energies, forces, and stresses from DFT
- Bispectrum component descriptors
- Linear regression

Testing Potentials: Hydrogen Implantation in Tungsten

• Interested in studying hydrogen implantation in tungsten and how it interacts within the material, especially with other plasma species or defects

33

- Initial testing of W-H SNAP potentials for hydrogen implantions
- 100 eV H implanted every 10 ps at 1000 K for (100) W surface
- Hydrogen correctly initially resides at tetrahedral interstitial site
- Diffusion barrier is somewhat high so diffusion is lower than expected
- EAM does not predict correct surface behavior and desorbs as H atoms as opposed to H_2 molecules

