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Molecular Dynamics: What is it?

Mathematical Formulation

Classical Mechanics
Atoms are Point Masses: r1, r2, ..... rN
Positions, Velocities, Forces: ri, vi, Fi
Potential Energy Function = V(rN)

6N coupled ODEs
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What is MD good for?

Quantum mechanical electronic structure calculations 
(QM) provide accurate description of  mechanical and 
chemical changes on the atom-scale: 10x10x10~1000 
atoms

Atom-scale phenomena drive a lot of  interesting physics, 
chemistry, materials science, mechanics, biology…but it 
usually plays out on a much larger scale

Mesoscale: much bigger than an atom, much smaller than 
a glass of  soda. 

QM and continuum/mesoscale models (CM) can not be 
directly compared.
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n Small molecular dynamics (MD) simulations can 
be directly compared to QM results, and made 
to reproduce them

n MD can also be scaled up to millions (billions) of 
atoms, overlapping the low-end of CM

n Limitations of MD orthogonal to CM
n Enables us to inform CM models with quantum-

accurate results Picture of soda glass: by Simon Cousins from High Wycombe, England - Bubbles, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=23020999



MD Versatility

Chemistry

Materials 
Science

Biophysics

Granular 
Flow

Coupling to 
Solid 

Mechanics



Atoms can be modeled as points (most 
common), finite-size spheres, or other 
shapes (e.g. ellipsoids)
Can model atomic-scale (all-atom model) 
or meso/continuum scale with MD-like 
models
Typically use an orthogonal or triclinic 
(skewed) simulation cell
Commonly use periodic boundary 
conditions: reduces finite size effects 
from boundaries and simulates bulk 
conditions

MD Basics 2D Triclinic



MD Time Integration Algorithm
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• Most codes and applications use variations and extensions to 
the Størmer-Verlet explicit integrator:

• Only second-order : δE = |<E>-E0
| ~ Δt2, but….

• time-reversible map: switching sign of Δt takes you back to 
initial state

• measure-preserving: Volume of differential cube (δv,δx) is 
conserved (but not shape).

• symplectic: Conserves sum of areas of differential 
parallelogram (δv,δx) projected onto each particular (vi,xi) 
plane

For istep < nsteps :

v← v+ Δt
2
F

x← x+Δt v
Compute F x( )

v← v+ Δt
2
F

Velocity form of  
Størmer-Verlet
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Figure 3: Area preservation of the flow of Hamiltonian systems

Figure 3 shows level curves of this function, and it also illustrates the area preser-
vation of the flow ϕt. Indeed, by Theorem 2, the areas of A and ϕt(A) as well
as those of B and ϕt(B) are the same, although their appearance is completely
different.

We next show that symplecticity of the flow is a characteristic property for
Hamiltonian systems. We call a differential equation ẏ = f(y) locally Hamilto-
nian, if for every y0 ∈ U there exists a neighbourhood where f(y) = J−1∇H(y)
for some functionH .

Theorem 3 Let f : U → R2d be continuously differentiable. Then, ẏ = f(y) is
locally Hamiltonian if and only if its flow ϕt(y) is symplectic for all y ∈ U and
for all sufficiently small t.

Proof. The necessity follows from Theorem 2. We therefore assume that the flow
ϕt is symplectic, and we have to prove the local existence of a functionH(y) such
that f(y) = J−1∇H(y). Differentiating (17) and using the fact that ∂ϕt/∂y0 is a
solution of the variational equation Ψ̇ = f ′

(
ϕt(y0)

)
Ψ, we obtain

d

dt

((∂ϕt

∂y0

)T
J

(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)(
f ′

(
ϕt(y0)

)T
J + Jf ′

(
ϕt(y0)

))(∂ϕt

∂y0

)
= 0.

Putting t = 0, it follows from J = −JT that Jf ′(y0) is a symmetric matrix for
all y0. The Integrability Lemma below shows that Jf(y) can be written as the
gradient of a functionH(y).
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Ernst Hairer, Lubich, 
Wanner, Geometric 
Numerical Integration 
(2006)



MD Time Integration Algorithm
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• time-reversibility and symplecticity: global stability of Verlet trumps local accuracy of high-
order schemes

• More specifically, it can be shown that for Hamiltonian equations of motion, Størmer-Verlet
exactly conserves a “shadow” Hamiltonian and E-ES ~ O(Δt2)

• For users: no energy drift over millions of timesteps
• For developers: easy to decouple integration scheme from efficient algorithms for force evaluation, 

parallelization.
• Symplectic high-order Runge-Kutta methods exist, but not widely adopted for MD

32 atom LJ cluster, 200 
million MD steps, 
Δt=0.005, T=0.4
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Statistical Mechanics: relates macroscopic observations (such as temperature and 
pressure) to microscopic states (i.e. atoms)

Phase space: a space in which all possible states of  a system are represented. For N
particles: 6N-dimensional phase space (3 position variables and 3 momentum 
variables for each particle)

Ensemble: an idealization consisting of  a large number of  virtual copies of  a 
system, considered all at once, each of  which represents a possible state that the real 
system might be in, i.e. a probability distribution for the state of  the system

Statistical Mechanics Basics



Using the velocity-verlet time integrator gives the microcanonical ensemble (NVE). 
How to simulate canonical (NVT) or isothermal-isobaric (NPT) ensembles?

Temperature is related to atom velocities through statistical mechanics, pressure is 
related to volume of  the simulation cell

Could just scale velocities and volume to the exact desired values, but this does not 
allow for fluctuations with a distribution typical for the ensemble

Instead Nose-Hoover style integrators are commonly used: dynamic variables are 
coupled to the particle velocities (thermostatting) and simulation box dimensions 
(barostatting)

Nose-Hoover uses a damping parameter specified in time units which determines how 
rapidly the temperature or pressure is relaxed. If  the damping parameter is too small, 
the temperature/pressure can fluctuate wildly; if  it is too large, the 
temperature/pressure will take too long to equilibrate

Thermostats and Barostats



Quantum chemistry: solves Schrödinger equation to get forces on atoms. Accurate 
but very computationally expensive and only feasible for small systems

Molecular dynamics: uses empirical force fields, sometimes fit to quantum data. Not 
as accurate but much faster.

Typically only interact with atoms in a spherical cutoff  and only consider pair-wise or 
three-body interactions

Interatomic Potentials

attractive tail

repulsive wall

Lennard-Jones Potential

Pair-wise distance

In
te

ra
ct

io
n 

En
er

gy



Accuracy = Higher Cost11

Moore’s Law for Interatomic Potentials
Plimpton and Thompson, MRS Bulletin (2012).



Neighbor Lists
Neighbor lists are a list of  neighboring atoms within the interaction cutoff  + skin for each 
central atom

Extra skin allows lists to be built less often

12

cutoff



Basic MD Timestep

During each timestep (without neighborlist build):

1. initial integrate
2. compute forces (pair, bonds, etc.)
3. final integrate
4. output (if  requested on this timestep)

*Computation of  diagnostics (i.e. thermodynamic properties) can be 
scattered throughout the timestep
May also occasionally build neighborlist for diagnostics

13



Long-Range Electrostatics (Optional)

Truncation doesn’t work well for charged systems due to long-ranged 
nature of  Coulombic interactions

Use reciprocal-space method to add long-range electrostatics:
◦ Ewald Sum—uses discrete Fourier transform, potentially most accurate, but slow 

for large systems
◦ Particle-particle particle-mesh (PPPM) and Smooth particle-mesh Ewald 

(SPME)—interpolates atom charges to grid and uses fast Fourier Transforms 
(FFTs), usually fastest

Other real-space methods sometimes used: fast multipole, multilevel 
summation

14



Domain decomposition: each processor owns a portion of  the simulation domain 
and atoms therein

MPI Parallelization Approach15

proc 1 proc 2

proc 3 proc 4

*This method is used by many MD codes (including LAMMPS) use, but there are other 
strategies as well



The processor domain is also extended include needed ghost atoms (copies of  atoms 
located on other processors)

Ghost Atoms16

proc 1

local atoms

ghost atoms



Basic MD Timestep

During each timestep (without neighborlist build):

1. initial integrate
2. compute forces (pair, bonds, etc.)
3. final integrate
4. output (if  requested on this timestep)

*Computation of  diagnostics (i.e. thermodynamic properties) can be 
scattered throughout the timestep
May also occasionally build neighborlist for diagnostics

17



Basic MD Timestep with MPI comm

During each timestep (without neighborlist build):

1. initial integrate
2. MPI communication: send atom coordinates to ghost atoms
3. compute forces (pair, bonds, etc.)
4. MPI communication: sum atom forces from ghost atoms (if  newton flag on)
5. final integrate
6. output (if  requested on this timestep)

*Computation of  diagnostics (fixes or computes) can be scattered throughout the 
timestep

18



Parallel MD Performance

Strong scaling: hold system size fixed while increasing processor count (# of  
atoms/processor decreases)

Weak scaling: increase system size in proportion to increasing processor count (# of  
atoms/processor remains constant)

For perfect strong scaling, doubling the processor count cuts the simulation time in 
half

For perfect weak scaling, the simulation time stays exactly the same when doubling 
the processor count

Harder to maintain parallel efficiency with strong scaling because the compute time 
decreases relative to the communication time

High communication overhead when strong scaling to a few 100 atoms/proc 
(depends on cost of  the force-field)

MD parallelizes well: major parts of  timestep (forces, neighbor list build, time 
integration) can be done in parallel through domain decomposition

19



MD Codes

There are several freely-available parallel molecular dynamics codes:

CHARMM, AMBER, GROMACS, NAMD, and Tinker are designed primarily for 
modeling biological systems. AMBER and CHARMM are the original classic codes 
in this genre. Gromacs, NAMD, and Tinker are more recently developed codes.

DL_POLY includes potentials for a variety of  biological and non-biological 
materials. LAMMPS is focused on materials but versatile. HOOMD is a very fast 
materials MD code designed to run on GPUs.

NWChem is both a molecular dynamics and quantum code which can model a 
variety of  materials.

We will now learn about LAMMPS in this tutorial.
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