
Recent Changes inRecent Changes in
LAMMPS DevelopmentLAMMPS Development

Dr. Axel Kohlmeyer

Associate Dean, College of Science and Technology
Associate Director, Institute for Computational Science

High-Performance Computing Team Lead

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2Virtual LAMMPS Workshop
and Symposium 2021

Preparing LAMMPS for the Future

Since the last LAMMPS workshop there have
been changes to the development process,
coding style, conventions, and requirements:

● Infrastructure and organizational changes
● Source code refactoring, coding style updates
● Build system updates, Package reorganization
● Documentation processing and reorganization
● Revised GitHub procedures and workflows
● Automated testing and code analysis

3Virtual LAMMPS Workshop
and Symposium 2021

Infrastructure and Organization
● The LAMMPS homepage and supporting sites

have moved to the lammps.org domain and to
servers run by developers at Temple U

● Automated testing and website, download, and
documentation deployment run @ Temple U

● Updates to the Google search index initiated
but not yet completed

● New forum on Materials Science Discourse
https://matsci.org/lammps which includes the
mailing list archive. We encourage you to join

https://matsci.org/lammps

4Virtual LAMMPS Workshop
and Symposium 2021

Overview of Code Changes
● C++-11 standard now minimum requirement
● Relaxed the “C with classes” style to include

more C++ features where beneficial and helpful
to simplify the code and make it more readable.
std::string, std::vector, std::map etc. may be
used (but use const references for arguments!)

● Custom classes and utils namespace with
convenience functions for common tasks

● Integrated fmtlib (to replace printf()) (→ C++20)
● Still using stdio library, not iostreams for I/O

5Virtual LAMMPS Workshop
and Symposium 2021

String Handling

● Replaced char * function arguments with
const std::string & in many places

● Added convenience functions like
utils::split_words(), utils::count_words(),
utils::split_lines(), utils::trim(),
utils::trim_comment(), utils::utf8_subst()

● Added utils::strmatch() for more flexible
comparisons based on simplified regular
expressions (e.g. “^rigid” will match all fix rigid
variant styles, including accelerated versions)

6Virtual LAMMPS Workshop
and Symposium 2021

String/File/Argument Parsing
● New Tokenizer class to replace strtok()
● New ValueTokenizer class to read numbers
● New TextFileReader and PotentialFileReader

classes for processing files
● New ArgInfo class for processing command

arguments like f_name[dim], c_name[dim1]
[dim2], v_name, d_name, i_name

● Functions like numeric(), inumeric(), tnumeric(),
expand_args(), bounds() have been moved
from class members to the utils namespace

7Virtual LAMMPS Workshop
and Symposium 2021

Convenience Functions
● New platform neutral functions in utils for path

manipulations: utils::path_basename(),
utils::path_dirname(), utils::path_join()

● “Safe” file read functions utils::sfgets(),
utils::sfread() that check for read errors

● New function utils::logmesg() to output the
same text to screen and logfile

● New utils::getsyserror() function get error
strings from failed C library operations

● open_potential() function moved to utils::

8Virtual LAMMPS Workshop
and Symposium 2021

fmtlib Integration

● LAMMPS includes a copy of fmtlib (accepted as
part of C++20) to replace printf()-like functions
● Type safe for 32- and 64-bit integers (no more need

for TAGINT_FORMAT, or BIGINT_FORMAT)
● fmt::format(<format>, args…) returns a std::string
● Uses “{}” as generic placeholder (for strings or

numbers), “{:10}” pads to at least 10 chars,
“{:.2f}” is equivalent to “%.2f” and much more

● Flexible formatting options not available in printf()
● Mechanism to add format string to custom functions

fmtlib Integration

9Virtual LAMMPS Workshop
and Symposium 2021

Code Simplification
● Printing adjustable error and warning messages

used to require allocating a buffer, using
sprintf(), output the message, free buffer
→ utils::logmesg(), Error::all(), Error::warning()
now accept variable number of arguments, if
more than one, the first is used as fmtlib format

● Adding/replacing fixes/computes/groups used
to require to build an argv-style argument list
→ convenience overload accepts string (often
created via fmt::format()) and will split words
into argv list via utils::split_words()

10Virtual LAMMPS Workshop
and Symposium 2021

Before and After

11Virtual LAMMPS Workshop
and Symposium 2021

Before and After

12Virtual LAMMPS Workshop
and Symposium 2021

Before and After

13Virtual LAMMPS Workshop
and Symposium 2021

Before and After

14Virtual LAMMPS Workshop
and Symposium 2021

C-Library Interface Refactoring
● C-style library interface is base for Python

module, Fortran interfaces, unit tests, and more
● Now more consistent and complete API
● library.h does not require mpi.h by default
● Many introspection functions added (available

packages, compilation settings etc.)
● Functions documented via Doxygen and

integrated into manual with examples
● Unit tests added (work in progress)

15Virtual LAMMPS Workshop
and Symposium 2021

Doxygen Documentation Comment

16Virtual LAMMPS Workshop
and Symposium 2021

Python Module Refactoring

● Now folder with multiple files like other modules
● Co-developed with C-library refactoring
● Benefits from introspection and query functions
● More “pythonic” behavior (query for data type)

and thus allow “duck typing” of return values
● NumPy wrappers to return NumPy arrays or

use them as arguments
● Benefits from -DLAMMPS_EXCEPTIONS to

recover from failures (particular in serial)

17Virtual LAMMPS Workshop
and Symposium 2021

Net Impact of Code Refactoring
● Code reduction (up to 5x for some cases)
● Increase of code reuse
● Improved readability of the source
● Added code comes with extensive unit tests

and embedded documentation via doxygen
● Consistent behavior between C and Python
● Complete replication of C API to Python API
● SWIG interface file for wrapping LAMMPS
● New Fortran (95 style) module in progress

18Virtual LAMMPS Workshop
and Symposium 2021

Coding Style Updates

● Checks (whitespace, permissions, old URLs)
● Clang-format configuration file (not mandatory),
● Updated include file conventions to follow best

practices and expose hidden dependencies
→ follow IWYU principle (can use iwyu tool)

● Header file more strictly required to follow
conventions (no “using”, PIMPL, forward decls,
namespace) to avoid clashes between styles

● Example: recent refactor of REAXFF package

19Virtual LAMMPS Workshop
and Symposium 2021

Before and After

20Virtual LAMMPS Workshop
and Symposium 2021

Build System Updates
● Make traditional make and CMake build behave

more consistent:
● Always build library and link executable to it
● Package collections (basic, most, all, nolib) as

yes/no-<arg> or CMake preset
● Packages reorganized: no more “USER”, a few

new packages, USER-MISC styles distributed
● Automated download for many external libs (not

recommended for OpenKIM and PLUMED)
● CMake builds DLL on Windows, include Python

21Virtual LAMMPS Workshop
and Symposium 2021

Documentation Updates

● Directly built from .rst files via sphinx
● Custom Python3 virtual environment in doc
● Using multiple sphinx extensions: spelling, math

typesetting, breathe (doxygen docs embedding)
● Python scripts to check for missing or duplicate

links, packages, styles etc.
● New programmer guide: includes content of

Developer.pdf, but also documentation of utility
functions and library interface, Python support

22Virtual LAMMPS Workshop
and Symposium 2021

23Virtual LAMMPS Workshop
and Symposium 2021

24Virtual LAMMPS Workshop
and Symposium 2021

Automated Testing
● Uses Jenkins server (hosted at Temple)

or GitHub Actions (for CodeQL, macOS Test)
● Pushes to GitHub or merges trigger test runs

● Integration Testing: compilation using both build
systems and different compilation settings

● Unit tests via CMake and CTest (see next slide)
● Run and regression tests
● Coding style checks
● Static code analysis tests
● Tests must pass to merge pull requests

25Virtual LAMMPS Workshop
and Symposium 2021

Unit Tests?

● The LAMMPS unittest source tree has a variety
of tests using the CTest software from CMake

● The C/C++ tests use the googletest library
(automatically downloaded and compiled)

● These include unit tests in the strict sense (e.g.
for utility functions and classes) but also tests
that require a partial of full setup of a simulation

● Tests for force styles (pair, bond, etc.) are more
like regression tests using a YAML file per test
with reference data to compare to

26Virtual LAMMPS Workshop
and Symposium 2021

Force Style Tests

● Test programs are like input file generators that
create LAMMPS instance and then run many
variants of short runs and compare forces and
energies to reference data: newton on/off,
single() vs. compute(), using data/restart file,
using different suffixes (if available).

● All variants are compared to the same
reference → found inconsistencies between
accelerator styles and base or single / compute

● Uses C-library API and its introspection support

27Virtual LAMMPS Workshop
and Symposium 2021

28Virtual LAMMPS Workshop
and Symposium 2021

More on Tests
● Tests also include validation of the library

interfaces: C-library, Python module, Fortran
● Tests for behavior of various input commands

(including “death tests” of required errors)
● Tests for tools like binary2txt or lammps-shell
● Unit tests have been crucial for the refactoring:

→ tests were added for original code
→ refactored code has to reproduce it

● Code coverage data is collected to guide where
more tests are needed. Current coverage: 33%

29Virtual LAMMPS Workshop
and Symposium 2021

GitHub Procedures

● All code added to LAMMPS via pull requests
● Typically one core developer manages merging

for a development cycle, other core developers
review contributions. One approval required

● Reviewer may block PR by requesting changes
● Failed automatic tests also block a merge
● Assigned LAMMPS developer usually assists

with making the code compliant and consistent
with either comments or by pushing changes

30Virtual LAMMPS Workshop
and Symposium 2021

Impact on Releases, Branches

● Three branches: master, unstable, stable
● Releases are much less frequent now and

interval between releases is (still) growing
● master branch similar to patch releases before

switch to using git and GitHub,
→automated testing reduces breakage

● Patch releases typically after 300-500 commits
● Stable releases 1-2 times per year with extra

stabilization period and added manual tests

31Virtual LAMMPS Workshop
and Symposium 2021

Other GitHub Features

● Contributors should receive “Collaborator” invite
● Templates for Issues and Pull requests to guide

submitters what information to provide
● Filling out the pull request template is required

as it confirms the agreement with releasing the
contribution under the LAMMPS licensing terms
(GPLv2 or LGPLv2.1 on request)

● CODEOWNERS file maps repository files to
GitHub user ids → automatic review requests

32Virtual LAMMPS Workshop
and Symposium 2021

Frequent Issues with Contributions

● Formatting, whitespace (tabs, CR-LF, trailing
whitespace) or permissions, old URLs

● Use of #include for non-LAMMPS or non-
system headers in *.h files defining styles

● Missing or incomplete documentation
● Does not compile with -DLAMMPS_BIGBIG
● Does not compile for Windows (with MinGW)
● Missing updates to src/.gitignore, src/.Purge.list,

src/<pkg>/Install.sh, lib/<pkg>Install.py

33Virtual LAMMPS Workshop
and Symposium 2021

Frequent Issues with Contributions

● Memory leaks, accessing unitialized data
● Pointers in classes not initialized to nullptr
● Mismatched new/delete vs malloc()/free()
● Unused variables, dead code
● Commented out debug statements,

commented out segments from original code
● Inconsistent file / style / class names
● Variable length arrays (not a C++ feature,

extension in GNU, Clang, PGI, but not MSVC)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

