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Preparing LAMMPS for the Future

Since the last LAMMPS workshop there have 
been changes to the development process, 
coding style, conventions, and requirements:

● Infrastructure and organizational changes
● Source code refactoring, coding style updates
● Build system updates, Package reorganization
● Documentation processing and reorganization
● Revised GitHub procedures and workflows
● Automated testing and code analysis
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Infrastructure and Organization
● The LAMMPS homepage and supporting sites 

have moved to the lammps.org domain and to 
servers run by developers at Temple U

● Automated testing and website, download, and 
documentation deployment run @ Temple U

● Updates to the Google search index initiated 
but not yet completed

● New forum on Materials Science Discourse 
https://matsci.org/lammps which includes the 
mailing list archive. We encourage you to join

https://matsci.org/lammps
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Overview of Code Changes
● C++-11 standard now minimum requirement
● Relaxed the “C with classes” style to include 

more C++ features where beneficial and helpful 
to simplify the code and make it more readable.
std::string, std::vector, std::map etc. may be 
used (but use const references for arguments!)

● Custom classes and utils namespace with 
convenience functions for common tasks

● Integrated fmtlib (to replace printf()) (→ C++20)
● Still using stdio library, not iostreams for I/O
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String Handling

● Replaced char * function arguments with 
const std::string & in many places

● Added convenience functions like 
utils::split_words(), utils::count_words(), 
utils::split_lines(), utils::trim(), 
utils::trim_comment(), utils::utf8_subst()

● Added utils::strmatch() for more flexible 
comparisons based on simplified regular 
expressions (e.g. “^rigid” will match all fix rigid 
variant styles, including accelerated versions) 
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String/File/Argument Parsing
● New Tokenizer class to replace strtok()
● New ValueTokenizer class to read numbers
● New TextFileReader and PotentialFileReader 

classes for processing files
● New ArgInfo class for processing command 

arguments like f_name[dim], c_name[dim1]
[dim2], v_name, d_name, i_name

● Functions like numeric(), inumeric(), tnumeric(), 
expand_args(), bounds() have been moved 
from class members to the utils namespace
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Convenience Functions
● New platform neutral functions in utils for path 

manipulations: utils::path_basename(), 
utils::path_dirname(), utils::path_join()

● “Safe” file read functions utils::sfgets(), 
utils::sfread() that check for read errors

● New function utils::logmesg() to output the 
same text to screen and logfile

● New utils::getsyserror() function get error 
strings from failed C library operations

● open_potential() function moved to utils::
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fmtlib Integration

● LAMMPS includes a copy of fmtlib (accepted as 
part of C++20) to replace printf()-like functions
● Type safe for 32- and 64-bit integers (no more need 

for TAGINT_FORMAT, or BIGINT_FORMAT)
● fmt::format(<format>, args…) returns a std::string
● Uses “{}” as generic placeholder (for strings or 

numbers), “{:10}” pads to at least 10 chars,
“{:.2f}” is equivalent to “%.2f” and much more

● Flexible formatting options not available in printf()
● Mechanism to add format string to custom functions

fmtlib Integration
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Code Simplification
● Printing adjustable error and warning messages 

used to require allocating a buffer, using 
sprintf(), output the message, free buffer
→ utils::logmesg(), Error::all(), Error::warning() 
now accept variable number of arguments, if 
more than one, the first is used as fmtlib format

● Adding/replacing fixes/computes/groups used 
to require to build an argv-style argument list
→ convenience overload accepts string (often 
created via fmt::format()) and will split words 
into argv list via utils::split_words() 
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Before and After
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C-Library Interface Refactoring
● C-style library interface is base for Python 

module, Fortran interfaces, unit tests, and more
● Now more consistent and complete API
● library.h does not require mpi.h by default
● Many introspection functions added (available 

packages, compilation settings etc.)
● Functions documented via Doxygen and 

integrated into manual with examples
● Unit tests added (work in progress) 
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Doxygen Documentation Comment
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Python Module Refactoring

● Now folder with multiple files like other modules
● Co-developed with C-library refactoring
● Benefits from introspection and query functions
● More “pythonic” behavior (query for data type) 

and thus allow “duck typing” of return values
● NumPy wrappers to return NumPy arrays or 

use them as arguments
● Benefits from -DLAMMPS_EXCEPTIONS to 

recover from failures (particular in serial)
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Net Impact of Code Refactoring
● Code reduction (up to 5x for some cases)
● Increase of code reuse
● Improved readability of the source
● Added code comes with extensive unit tests 

and embedded documentation via doxygen
● Consistent behavior between C and Python
● Complete replication of C API to Python API
● SWIG interface file for wrapping LAMMPS
● New Fortran (95 style) module in progress
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Coding Style Updates

● Checks (whitespace, permissions, old URLs)
● Clang-format configuration file (not mandatory),
● Updated include file conventions to follow best 

practices and expose hidden dependencies
→ follow IWYU principle (can use iwyu tool)

● Header file more strictly required to follow 
conventions (no “using”, PIMPL, forward decls, 
namespace) to avoid clashes between styles

● Example: recent refactor of REAXFF package
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Build System Updates
● Make traditional make and CMake build behave 

more consistent:
● Always build library and link executable to it
● Package collections (basic, most, all, nolib) as 

yes/no-<arg> or CMake preset
● Packages reorganized: no more “USER”, a few 

new packages, USER-MISC styles distributed
● Automated download for many external libs (not 

recommended for OpenKIM and PLUMED)
● CMake builds DLL on Windows, include Python 
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Documentation Updates

● Directly built from .rst files via sphinx
● Custom Python3 virtual environment in doc
● Using multiple sphinx extensions: spelling, math 

typesetting, breathe (doxygen docs embedding)
● Python scripts to check for missing or duplicate 

links, packages, styles etc.
● New programmer guide: includes content of 

Developer.pdf, but also documentation of utility 
functions and library interface, Python support 
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Automated Testing
● Uses Jenkins server (hosted at Temple)

or GitHub Actions (for CodeQL, macOS Test)
● Pushes to GitHub or merges trigger test runs

● Integration Testing: compilation using both build 
systems and different compilation settings

● Unit tests via CMake and CTest (see next slide)
● Run and regression tests
● Coding style checks
● Static code analysis tests
● Tests must pass to merge pull requests
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Unit Tests?

● The LAMMPS unittest source tree has a variety 
of tests using the CTest software from CMake

● The C/C++ tests use the googletest library 
(automatically downloaded and compiled)

● These include unit tests in the strict sense (e.g. 
for utility functions and classes) but also tests 
that require a partial of full setup of a simulation

● Tests for force styles (pair, bond, etc.) are more 
like regression tests using a YAML file per test 
with reference data to compare to
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Force Style Tests

● Test programs are like input file generators that 
create LAMMPS instance and then run many 
variants of short runs and compare forces and 
energies to reference data: newton on/off, 
single() vs. compute(), using data/restart file, 
using different suffixes (if available).

● All variants are compared to the same 
reference → found inconsistencies between 
accelerator styles and base or single / compute

● Uses C-library API and its introspection support
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More on Tests
● Tests also include validation of the library 

interfaces: C-library, Python module, Fortran
● Tests for behavior of various input commands 

(including “death tests” of required errors)
● Tests for tools like binary2txt or lammps-shell
● Unit tests have been crucial for the refactoring:

→ tests were added for original code
→ refactored code has to reproduce it

● Code coverage data is collected to guide where 
more tests are needed. Current coverage:  33% 
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GitHub Procedures

● All code added to LAMMPS via pull requests
● Typically one core developer manages merging 

for a development cycle, other core developers 
review contributions. One approval required

● Reviewer may block PR by requesting changes
● Failed automatic tests also block a merge
● Assigned LAMMPS developer usually assists 

with making the code compliant and consistent 
with either comments or by pushing changes
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Impact on Releases, Branches

● Three branches: master, unstable, stable
● Releases are much less frequent now and 

interval between releases is (still) growing
● master branch similar to patch releases before 

switch to using git and GitHub,
→automated testing reduces breakage

● Patch releases typically after 300-500 commits
● Stable releases 1-2 times per year with extra 

stabilization period and added manual tests
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Other GitHub Features

● Contributors should receive “Collaborator” invite
● Templates for Issues and Pull requests to guide 

submitters what information to provide
● Filling out the pull request template is required 

as it confirms the agreement with releasing the 
contribution under the LAMMPS licensing terms 
(GPLv2 or LGPLv2.1 on request)

● CODEOWNERS file maps repository files to 
GitHub user ids → automatic review requests 
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Frequent Issues with Contributions

● Formatting, whitespace (tabs, CR-LF, trailing 
whitespace) or permissions, old URLs

● Use of #include for non-LAMMPS or non-
system headers in *.h files defining styles

● Missing or incomplete documentation
● Does not compile with -DLAMMPS_BIGBIG
● Does not compile for Windows (with MinGW)
● Missing updates to src/.gitignore, src/.Purge.list, 

src/<pkg>/Install.sh, lib/<pkg>Install.py
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Frequent Issues with Contributions

● Memory leaks, accessing unitialized data
● Pointers in classes not initialized to nullptr
● Mismatched new/delete vs malloc()/free()
● Unused variables, dead code
● Commented out debug statements,

commented out segments from original code
● Inconsistent file / style / class names
● Variable length arrays (not a C++ feature, 

extension in GNU, Clang, PGI, but not MSVC)
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