
New distributed grid support in LAMMPS

Steve Plimpton
Sandia National Labs (retired)
Temple University (adjunct)

sjplimp@gmail.com

8th LAMMPS Workshop and Symposium
Virtual meeting – August 2023



Motivation

LAMMPS is obviously a particle code

But grids (or meshes) can be useful for:

analysis (grouping particles, data reduction)
visualization (color each grid cell)
hybrid particle/grid models

Examples of hybrid particle/grid models:
Long-range Coulombics - FFTs more efficient than huge cutoff

charge is mapped to grid cells
Poisson’s equation solved on grid via FFTs
electric field on grid mapped back to particles

Two-temperature model

atoms + electron temperature, latter on a grid
heat diffuses on grid, electron heat couples to atomic motion

CG models like material point method (MPM)

meshfree continuum-based material model
grid used to compute deformation gradient and motion a⃗, v⃗



Motivation

LAMMPS is obviously a particle code

But grids (or meshes) can be useful for:

analysis (grouping particles, data reduction)
visualization (color each grid cell)
hybrid particle/grid models

Examples of hybrid particle/grid models:
Long-range Coulombics - FFTs more efficient than huge cutoff

charge is mapped to grid cells
Poisson’s equation solved on grid via FFTs
electric field on grid mapped back to particles

Two-temperature model

atoms + electron temperature, latter on a grid
heat diffuses on grid, electron heat couples to atomic motion

CG models like material point method (MPM)

meshfree continuum-based material model
grid used to compute deformation gradient and motion a⃗, v⃗



Grids in LAMMPS

A regular grid overlays entire simulation domain

2d or 3d systems

orthogonal or triclinic, periodic or non-periodic

any size in each dimension:

4x4 (2d) or 1000x1000x1000 or 100x500x3000
10x10x1 or 1x1x10 or even 1x1x1



What distributed grid means

Each proc owns grid cells whose center points
are inside its sub-domain

This is always a sub-block of the full grid

Can also store nearby ghost grid cells its particles interact with

Works with brick or tiled spatial decompositions

Grid cells are typically smaller than proc sub-domains
but do not have to be =⇒ a 100 x 100 x 1 grid



What distributed grid means

Each proc owns grid cells whose center points
are inside its sub-domain

This is always a sub-block of the full grid

Can also store nearby ghost grid cells its particles interact with

Works with brick or tiled spatial decompositions

Grid cells are typically smaller than proc sub-domains
but do not have to be =⇒ a 100 x 100 x 1 grid



What distributed grid means

Each proc owns grid cells whose center points
are inside its sub-domain

This is always a sub-block of the full grid

Can also store nearby ghost grid cells its particles interact with

Works with brick or tiled spatial decompositions

Grid cells are typically smaller than proc sub-domains
but do not have to be =⇒ a 100 x 100 x 1 grid



Coding details

New Grid2d and Grid3d classes

can be instantiated by a Pair, Fix, Compute, KSpace style

stores the partitioning of grid across procs, but NOT data

Calling style can:

define multiple grids (different sizes)

define/store one or more scalar/vector data sets on each grid

each grid and data field is named by the caller,
so that other commands can access the data

grid data reference: f ID:gridname:dataname[3]

Support for forward and reverse communication

forward: comm of owned cell data to ghost cells

reverse: comm/summation of ghost cell data to owned cells

caller provides pack & unpack methods for its grid data

Support for load balancing



Coding details

New Grid2d and Grid3d classes

can be instantiated by a Pair, Fix, Compute, KSpace style

stores the partitioning of grid across procs, but NOT data

Calling style can:

define multiple grids (different sizes)

define/store one or more scalar/vector data sets on each grid

each grid and data field is named by the caller,
so that other commands can access the data

grid data reference: f ID:gridname:dataname[3]

Support for forward and reverse communication

forward: comm of owned cell data to ghost cells

reverse: comm/summation of ghost cell data to owned cells

caller provides pack & unpack methods for its grid data

Support for load balancing



Coding details

New Grid2d and Grid3d classes

can be instantiated by a Pair, Fix, Compute, KSpace style

stores the partitioning of grid across procs, but NOT data

Calling style can:

define multiple grids (different sizes)

define/store one or more scalar/vector data sets on each grid

each grid and data field is named by the caller,
so that other commands can access the data

grid data reference: f ID:gridname:dataname[3]

Support for forward and reverse communication

forward: comm of owned cell data to ghost cells

reverse: comm/summation of ghost cell data to owned cells

caller provides pack & unpack methods for its grid data

Support for load balancing



Code snippets for caller using Grid2d class

1 Define global grid of size Nx by Ny:
grid = Grid2d(LAMMPS *lmp, MPI Comm world, Nx, Ny);

2 Handful of methods to choose if/how ghost cells are defined

3 Partition the grid - return extents:
grid->setup grid(ixlo,ixhi,iylo,iyhi,oxlo,oxhi,oylo,oyhi);

4 Setup and perform forward, reverse communication:
grid->setup comm(nbuf1,nbuf2);
grid->forward comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
grid->reverse comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
caller provides pack/unpack callback methods

5 Read file() and write file() methods
for reading/writing grid data from/to files

6 Remap() methods to invoke when load balancing occurs

7 Caller provides grid data access methods for other classes



Code snippets for caller using Grid2d class

1 Define global grid of size Nx by Ny:
grid = Grid2d(LAMMPS *lmp, MPI Comm world, Nx, Ny);

2 Handful of methods to choose if/how ghost cells are defined

3 Partition the grid - return extents:
grid->setup grid(ixlo,ixhi,iylo,iyhi,oxlo,oxhi,oylo,oyhi);

4 Setup and perform forward, reverse communication:
grid->setup comm(nbuf1,nbuf2);
grid->forward comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
grid->reverse comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
caller provides pack/unpack callback methods

5 Read file() and write file() methods
for reading/writing grid data from/to files

6 Remap() methods to invoke when load balancing occurs

7 Caller provides grid data access methods for other classes



Code snippets for caller using Grid2d class

1 Define global grid of size Nx by Ny:
grid = Grid2d(LAMMPS *lmp, MPI Comm world, Nx, Ny);

2 Handful of methods to choose if/how ghost cells are defined

3 Partition the grid - return extents:
grid->setup grid(ixlo,ixhi,iylo,iyhi,oxlo,oxhi,oylo,oyhi);

4 Setup and perform forward, reverse communication:
grid->setup comm(nbuf1,nbuf2);
grid->forward comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
grid->reverse comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
caller provides pack/unpack callback methods

5 Read file() and write file() methods
for reading/writing grid data from/to files

6 Remap() methods to invoke when load balancing occurs

7 Caller provides grid data access methods for other classes



Code snippets for caller using Grid2d class

1 Define global grid of size Nx by Ny:
grid = Grid2d(LAMMPS *lmp, MPI Comm world, Nx, Ny);

2 Handful of methods to choose if/how ghost cells are defined

3 Partition the grid - return extents:
grid->setup grid(ixlo,ixhi,iylo,iyhi,oxlo,oxhi,oylo,oyhi);

4 Setup and perform forward, reverse communication:
grid->setup comm(nbuf1,nbuf2);
grid->forward comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
grid->reverse comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
caller provides pack/unpack callback methods

5 Read file() and write file() methods
for reading/writing grid data from/to files

6 Remap() methods to invoke when load balancing occurs

7 Caller provides grid data access methods for other classes



Code snippets for caller using Grid2d class

1 Define global grid of size Nx by Ny:
grid = Grid2d(LAMMPS *lmp, MPI Comm world, Nx, Ny);

2 Handful of methods to choose if/how ghost cells are defined

3 Partition the grid - return extents:
grid->setup grid(ixlo,ixhi,iylo,iyhi,oxlo,oxhi,oylo,oyhi);

4 Setup and perform forward, reverse communication:
grid->setup comm(nbuf1,nbuf2);
grid->forward comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
grid->reverse comm(nper,nbyte,buf1,buf2,MPI DOUBLE);
caller provides pack/unpack callback methods

5 Read file() and write file() methods
for reading/writing grid data from/to files

6 Remap() methods to invoke when load balancing occurs

7 Caller provides grid data access methods for other classes



Current use of distributed grids in LAMMPS

KSpace solvers:
PPPM: gathering charge, FFTs, scattering forces
MSM: multilevel cascade of grid resolutions

Pair styles:
AMOEBA and HIPPO force fields
multiple terms with FFTs (similar to PPPM)

Fix styles:
fix ttm/grid = two-temperature model (fix ttm is global grid)
fix ave/grid for particles or grid cells

fix ave/chunk allows chunks which are regular grid cells
but it’s a global grid, not distributed
thus inefficient in CPU and memory for large grids
fix ave/grid can use arbitrarily large grids

Compute styles: compute property/grid

Dump styles:
dump grid, dump image, dump movie
OVITO can read/viz LAMMPS dump grid files



Current use of distributed grids in LAMMPS

KSpace solvers:
PPPM: gathering charge, FFTs, scattering forces
MSM: multilevel cascade of grid resolutions

Pair styles:
AMOEBA and HIPPO force fields
multiple terms with FFTs (similar to PPPM)

Fix styles:
fix ttm/grid = two-temperature model (fix ttm is global grid)
fix ave/grid for particles or grid cells

fix ave/chunk allows chunks which are regular grid cells
but it’s a global grid, not distributed
thus inefficient in CPU and memory for large grids
fix ave/grid can use arbitrarily large grids

Compute styles: compute property/grid

Dump styles:
dump grid, dump image, dump movie
OVITO can read/viz LAMMPS dump grid files



Current use of distributed grids in LAMMPS

KSpace solvers:
PPPM: gathering charge, FFTs, scattering forces
MSM: multilevel cascade of grid resolutions

Pair styles:
AMOEBA and HIPPO force fields
multiple terms with FFTs (similar to PPPM)

Fix styles:
fix ttm/grid = two-temperature model (fix ttm is global grid)
fix ave/grid for particles or grid cells

fix ave/chunk allows chunks which are regular grid cells
but it’s a global grid, not distributed
thus inefficient in CPU and memory for large grids
fix ave/grid can use arbitrarily large grids

Compute styles: compute property/grid

Dump styles:
dump grid, dump image, dump movie
OVITO can read/viz LAMMPS dump grid files



SPH movie of water flow - particles colored by KE



SPH movie of water flow - grid colored by particle count



Last snapshot comparison



More details

User guide: https://docs.lammps.org/Howto grid.html

Overview from user perspective

Current commands that use distributed grids

How to access grid data in input script commands

Programmer Guide: https://docs.lammps.org/Developer grid.html

How to write a new style which uses a distributed grid

Description of all methods in Grid2d/Grid3d classes


