Styles, styles, styles

Steve Plimpton
Sandia National Labs (retired)
Temple University (adjunct)
sjplimp@gmail.com

8th LAMMPS Workshop Tutorial Virtual meeting – August 2023

Goals for this lecture

Teach you ...

- What styles mean in LAMMPS
- The most versatile styles and what they do
- How styles let you tailor your LAMMPS simulation

Motivation: If you familiarize yourself with styles, you'll know many, many things LAMMPS can do

What is a style in LAMMPS lingo

- A command with many variants
 - pair_style ⇒ pair_style lj/cut, pair_style eam, etc
 - fix ⇒ fix nve, fix rigid/small, etc
- Why not command names = pair or fix_style ?
 - single instance: command name includes style
 - many instances: command name w/out style
- A virtual parent class with many derived child classes
 - parent = src/pair.cpp or src/fix.cpp
 - children = pair_lj_cut.cpp, pair_eam.cpp, etc
 - children = fix_nve.cpp, fix_rigid_small.cpp, etc

\sim 20 different styles in current LAMMPS

Most are invoked as input script commands, some are internal Asterisk means only a single instance of that style (at a time)

atom*	27	sets of per-atom properties		
pair*	275	pairwise/manybody potentials		
bond*/angle*/dihedral*	25/20/15	intra-molecular interactions		
kspace*	20	long-range Coulombic solvers		
fix	250	operations while timestepping		
compute	160	diagnostic calculations		
region	8	geometric regions		
dump	25	output of simulation snapshots		
integrate*	2	Verlet or rRESPA algorithms		
minimize*	9	energy minimization algorithm		
command	50	added input script commands:		
		create_box, create_atoms, run		

Pair styles

- LAMMPS lingo for interatomic potentials or force fields
- Define how atoms interact each other
 - short-range portion only
- Critical choice to make for your model and material
 - two talks later today on this topic
 - literature search can also be helpful
- Trade-offs in accuracy vs computational cost
- A pair style can be pair-wise or many-body
 - LJ, Coulombic, Buckingham, Morse, Yukawa, ...
 - EAM, Tersoff, REBO, ReaxFF, ...
- Short-range Coulombics included in pair style
 - lj/cut, lj/cut/coul/cut, lj/cut/coul/long, lj/cut/coul/wolf
 - done to optimize inner loop

Categories of pair styles for different materials

- Solids
 - eam, eim, meam, adp, etc
- Bio and polymers
 - charmm, class2, gromacs, dreiding, etc
- Reactive or bond-order
 - tersoff, bop, airebo, comb, reaxff, etc
- Coarse-grained
 - dpd, granular, sph, peri, colloid, lubricate, brownian, etc
- Aspherical
 - gayberne, resquared, line, tri, etc
- Pair table for tabulation of any pair-wise interaction
- Pair hybrid enables modeling of hybrid systems
 - polymers on metal
 - CNTs in water
 - solid-solid interface between 2 different materials

List of pair styles available natively in LAMMPS

See website Commands ⇒ Pair Styles
Annotated with (gikot) for 5 accelerated variants (talk later)

5.8. Pair_style potentials All LAMMPS pair style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT. hybrid (k) hybrid/overlay (k) none zero hybrid/scaled kim adp (o) agni (o) airebo (io) airebo/morse (io) awpmd/cut beck (go) body/nparticle atm body/rounded/polygon body/rounded/polyhedron born (go) hon born/coul/dsf born/coul/dsf/cs born/coul/long (go) born/coul/long/cs (g)

- pair kim command = interface to OpenKIM repository
- 2 talks: today and Ellad Tadmor talk: Wed early session
- OpenKIM breakout: Fri

One-line descriptions of pair styles

See pair_style doc page

- none turn off pairwise interactions
- hybrid multiple styles of pairwise interactions
- hybrid/overlay multiple styles of superposed pairwise interactions
- hybrid/scaled multiple styles of scaled superposed pairwise interactions
- zero neighbor list but no interactions
- adp angular dependent potential (ADP) of Mishin
- agni AGNI machine-learning potential
- airebo AIREBO potential of Stuart
- airebo/morse AIREBO with Morse instead of LJ
- atm Axilrod-Teller-Muto potential
- awpmd/cut Antisymmetrized Wave Packet MD potential for atoms and electrons
- beck Beck potential
- body/nparticle interactions between body particles
- body/rounded/polygon granular-style 2d polygon potential
- body/rounded/polyhedron granular-style 3d polyhedron potential
- bop BOP potential of Pettifor

Relative CPU cost of different potentials is dramatic

See website Benchmark \Rightarrow Interatomic potential for details Useful to estimate how long your simulation will run

Potential	System	# Atoms	Timestep	Neighs/atom	Memory	CPU	LJ Ratio
Granular	chute flow	32000	0.0001 tau	7.2	33 Mb	2.08e-7	0.26x
FENE bead/spring	polymer melt	32000	0.012 tau	9.7	8.4 Mb	2.86e-7	0.36x
Lennard-Jones	LJ liquid	32000	0.005 tau	76.9	12 Mb	8.01e-7	1.0x
DPD	pure solvent	32000	0.04 tau	41.3	9.4 Mb	1.22e-6	1.53x
EAM	bulk Cu	32000	5 fmsec	75.5	13 Mb	1.87e-6	2.34x
REBO	polyethylene	32640	0.5 fmsec	149	33 Mb	3.18e-6	3.97x
Stillinger-Weber	bulk Si	32000	1 fmsec	30.0	11 Mb	3.28e-6	4.10x
Tersoff	bulk Si	32000	1 fmsec	16.6	9.2 Mb	3.74e-6	4.67x

AIREBO	polyethylene	32640	0.5 fmsec	681	101 Mb	3.25e-5	40.6x
ReaxFF/C	PETN crystal	32480	0.1 fmsec	667	976 Mb	1.09e-4	136x
<u>COMB</u>	crystalline SiO2	32400	0.2 fmsec	572	85 Mb	2.00e-4	250x
<u>e</u> FF	H plasma	32000	0.001 fmsec	5066	365 Mb	2.16e-4	270x

Bond styles (also angle, dihedral, improper)

LAMMPS lingo for intra-molecular 2,3,4-body interactions

- Used for molecules with fixed covalent bonds
 - fix bond/react command can form and break them
- To learn what bond styles LAMMPS has ... where to look?
- Website Commands ⇒ Bond Styles or bond_style doc page

- · none turn off bonded interactions
- · zero topology but no interactions
- · hybrid define multiple styles of bond interactions
- class2 COMPASS (class 2) bond
- fene FENE (finite-extensible non-linear elastic) bond
- fene/expand FENE bonds with variable size particles
- gaussian multicentered Gaussian-based bond potential
- gromos GROMOS force field bond
- · harmonic harmonic bond
- harmonic/shift shifted harmonic bond

KSpace styles

LAMMPS lingo for long-range Coulombic solvers Website Commands \Rightarrow Kspace Styles or kspace_style doc page

- Methods:
 - traditional Ewald, scales as $O(N^{3/2})$
 - PPPM (like PME), scales as $O(N \log(N))$
 - MSM, scales as O(N)
- Additional options:
 - non-periodic: PPPM (z) or MSM (xyz)
 - long-range dispersion (LJ) or dipolar
- PPPM is fastest choice for most systems
 - FFTs can scale poorly for large processor counts
- MSM can be faster for low-accuracy or large proc counts
- Pay attention to cutoff & accuracy settings
 - cutoff adjusts Real-space versus K-Space work
 - can affect performance (see logfile timings)

Fix styles

Most flexible feature in LAMMPS
Fixes enable control of what happens when in a timestep
Internal flags determine when different methods of a fix are invoked

communicate ghost coords

MD Loop over timesteps:

build neighbor list (once in a while) compute forces communicate ghost forces

output to screen and files

Fix styles

```
Most flexible feature in LAMMPS
Fixes enable control of what happens when in a timestep
Internal flags determine when different methods of a fix are invoked
MD Loop over timesteps:
  fix initial
                          NVE, NVT, NPT, rigid-body integration
  communicate ghost coords
  fix neighbor
                                             insert/delete particles
  build neighbor list (once in a while)
  compute forces
  communicate ghost forces
  fix force
                       SHAKE, langevin drag, wall, spring, gravity
  fix final
                          NVE, NVT, NPT, rigid-body integration
  fix end
                             volume & temp rescaling, diagnostics
  output to screen and files
```

More on fix styles

- Assign each fix a unique alphanumeric ID
- Choose what group of atoms to apply fix to
- Examples of groups in in.obstacle script:
 - fix 1 all nve
 - fix 2 flow temp/rescale 200 1.0 1.0 0.02 1.0
 - fix 5 upper aveforce 0.0 -0.5 0.0
 - fix 6 flow addforce 1.0 0.0 0.0
- An input script may use dozens of different fixes
 - or same fix multiple times, on different groups of atoms
- Fixes can produce output or store persistent per-atom info
 - thermostat energy, forces on wall, time-zero atom coords
 - accessible by other commands or variables or log/dump output

Website Commands \Rightarrow Fix Styles or fix doc page

Compute styles

LAMMPS lingo for a diagnostic computation

- Calculate some property of the system
- Always for the current timestep
- Defining a compute in an input script does not invoke it
- Fixes or output commands (thermo, dump) can take computes as input, invoke only on timesteps when needed

Examples:

- Thermostat fixes: compute temp, temp/asphere
- Time averaging fixes operating on computes: fix ave/time, ave/chunk (spatial), ave/atom, ave/histo
- Thermo output to logfile: compute temp, pe, press
- Dump files: compute coord/atom, cna/atom, voronoi/atom

More on compute styles

- All computes store output:
 - global vs per-atom vs local info
 - computes with /atom suffix produce per-atom info
 - computes with /local suffix produce local info
 - scalar vs vector vs array data structure
 - accessible by other commands or variables or log/dump output
- Examples:
 - temp & pressure = global scalar or vector
 - pe/atom = potential energy per atom (per-atom vector)
 - displace/atom = displacement per atom (per-atom array)
 - pair/local & bond/local = local per-neighbor or per-bond info

To learn what compute styles LAMMPS has ... Website Commands ⇒ Compute Styles or compute doc page