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Materials For Fusion Energy3

iter.org

Tungsten Divertor

Plasma: 
~90% H/10% He
With impurities 

(Be,N,etc.)

Hydrogen Blisters

Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158

Helium Fuzz Growth

Baldwin, et. al.  J. Nucl. Mater. 363-365 (2007) 1179-1183

W-Be Intermetallics

•  Difficult to develop materials to handle 
extreme conditions within tokamak

• Large heat loads of 10-20 MW/m3

•  High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)



Materials For Fusion Energy4

•  Difficult to develop materials to handle 
extreme conditions within tokamak

• Large heat loads of 10-20 MW/m3

•  High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)
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• Many complex processes that occur at the 
plasma/material interface that can lead to 
material degradation

Plasma: 
~90% H/10% He
With impurities 

(Be,N,etc.)

Wirth, et al.  MRS Bulletin 36 (2011) 216-222

Tungsten Divertor



Why Do We Need ML-IAPs?  5

We want to model very complex physics 
and chemistry at the plasma-material 

interface.  
How do we do this?

M Mayer et al 2016 Phys. Scr. 2016 014051 

Wirth, et al.  MRS Bulletin 36 
(2011) 216-222

Electronic Structure 
Methods

▪  Highly accurate
▪  Can model a lot of 

relevant physics
▪  Very expensive, O(N3) 

scaling, ~100 atoms

Classical Potentials

▪ Lots of functional forms that 
are good for many different 
materials
▪ Scales well
▪ Accuracy highly dependent on 
potential and application
▪ Functional form limits type of 
physics that can be modeled

Machine Learned Interatomic Potentials
▪ Trained to electronic structure data for increased 
accuracy
▪ Flexible, not limited by inherent physics of model
▪ Quantum accuracy but MD scalability 
▪ Need good training data for accurate model



What Makes A Machine Learned Interatomic Potential?6

Descriptor
• Describes the local atomic  

environment
• Requirements

• Rotation/Translation/. 
Permutation invariant

• Equivariant forces
• Smooth differentiable
• Extensible

• Some Examples
• Bispectrum, SOAP, ACE, 

Moment Tensors, etc.

Regression Method
• Linear regression
• Kernel ridge regression
• Gaussian process
• Non-linear optimization
• Neural Networks

Training Data
• Generated using quantum 

methods
• Can include:

• Energies
• Forces
• Stresses

• Variety of atomic configurations 
• Bulk structures, liquids, 

surfaces, defects, etc.
ACE

• Energies, forces, and stresses 
from DFT

• Atomic Cluster Expansion 
descriptors

• Linear regression



ACE Definition and FitSNAP Work Flow7

Code available: https://github.com/FitSNAP/FitSNAP

ACE Development WorkflowModel Form

Regression Method

• Energy of atom 𝑖 expressed as a basis expansion over N-
body ACE descriptors

• β vector fully describes a ACE potential

• Decouples MD speed from training set size

DFT TrainingSet of DescriptorsWeights

The ACE descriptors are generalizable

Rohskopf et al., (2023). FitSNAP: Atomistic machine learning with 

LAMMPS. Journal of Open Source Software, 8(84), 5118



Fusion ML-IAPs Developed8

SNAP W-H

Studied formation of H platelets at high H fluences

M.A. Cusentino, et al.  MRX 10 (2023) 106513

SNAP W-Be-He

W-Be intermetallics inhibited He bubble 
nucleation and growth

Cusentino, et. al. Nucl. Fusion 60 (2020) 126018 

SNAP W-Be

Simulated initial formation of experimentally 
observed W-Be intermetallics

Cusentino, et al. Nucl. Fusion, 61 (2021) 046049 

SNAP W-ZrC

Modeled impact of temperature on strength 
of W-ZrC

Sikorski, et al. J. Chem. Phys. 158 (2023) 11 



Role Of Transmutation Products On First Wall Materials (SciDAC-5)

• First wall materials will be subject to extreme 
environments including neutron irradiation which will 
alter material chemistry through transmutation

• How will this impact:

▪ Thermomechanical properties

▪ Defect properties

• Lack of fusion prototypic neutron source emphasizes 
need for multiscale models of the effect of 
transmutation products on first-wall materials

• Molecular dynamics will play a key role but lack of 
accurate interatomic potentials for these material 
systems:

▪ W-Re-Os

▪ Fe-Cr-Mn-W

▪ SiC-Mg
9

First Wall Design Reference

Transmutation Products in W

M.R. Gilbert and J.-Ch Sublet, Nucl. Fusion 51 (2011) 043005 (13pp) 



Goals for W-Re-Os ML-IAP Development10

• Re and Os are the main transmutation product in W

• Re is shown to cluster and form precipitates in W

▪ Interested in studying this behavior but current 
potentials predict incorrect Re-Re binding 
energies in W compared to DFT

▪ Re should only cluster when vacancies are 
present

• Focus fitting of potential on accurate defect 
properties to study the effect of vacancies on Re 
clustering in W with accurate IAP

• Interested in studying thermomechanical properties 
as well

Yu-Hao Li et al 2017 Nucl. Fusion 57 046006 

Re-Re and Os-Os Binding 
Energies in W



W-Re Training Set
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Deformed Unit Cells

Elastically strained, sheared, and 
compressed/expanded unit cells

Defect Configurations

Point Defects, Re-Re, and Re-V configurations

Chi and Sigma phases

W-Re Intermetallics

DFT-MD

Pure W, pure Re, and mixed W-Re at 4000 K

Pure Phases

Deformed unit cells, DFT-MD, 
Surfaces, Dimers, Defects

Alloys

Deformed unit cells, DFT-MD, 
Defects Interactions, 

Intermetallics

Grey: W Blue: Re

NE : 13,345

NF : 793,689



Fitting W-Re ACE ML-IAP

Parameters to optimize:

• Radial cutoff (rcut) for each 
element and cross-term

• Inner cutoff (rcutinner) for each 
element and cross-term (related 
to ZBL switching function)

• λ for each element and cross-
term, determines emphasis of 
short range interactions

• Energy and force groupweights 
in linear regression

12

Optimize Single Element Potentials 
then Freeze Parameters and Combine

Re

Elastic Constants

Cohesive Energies

W

Elastic Constants

Cohesive Energies

Defect Energies

Migration Barriers W-Re

W-Re Defect Energies

W-Re Migration Barriers

Re-Re Binding Energies

Optimize

λWW

rcut
WW

W Groupweights

Optimize

λReRe

rcut
ReRe

Re Groupweights

Optimize

λWRe

rcut
WRe

WRe Groupweights
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Optimize Single Element Potentials 
then Freeze Parameters and Combine

Re

Elastic Constants

Cohesive Energies

W

Elastic Constants

Cohesive Energies

Defect Energies

Migration Barriers W-Re

W-Re Defect Energies

W-Re Migration Barriers

Re-Re Binding Energies

Optimize

λWW

rcut
WW

W Groupweights

Optimize

λReRe

rcut
ReRe

Re Groupweights

Optimize

λWRe

rcut
WRe

WRe Groupweights

Elastic 
Constants     

W 
ACE (DFT)

Re
ACE (DFT)

C11 (GPa) 564 (517) 586 (614)

C12 (GPa) 231 (198) 302 (285)

C13 (GPa) - 128 (165)

C33 (GPa) - 243 (222)

C44 (GPa) 153 (142) 647 (673)

Elastic 
Constants     

W 
ACE (DFT)

C11 (GPa) 486 (517)

C12 (GPa) 199 (198)

C13 (GPa) -

C33 (GPa) -

C44 (GPa) 128 (142)

Elastic 
Constants     

Re 
ACE (DFT)

C11 (GPa) 614 (614)

C12 (GPa) 292 (285)

C13 (GPa) 164 (165)

C33 (GPa) 271 (222)

C44 (GPa) 677 (673)



Initial W-Re Optimization14

Elastic 
Constants     

W 
ACE (DFT)

Re
ACE (DFT)

C11 (GPa) 564 (517) 586 (614)

C12 (GPa) 231 (198) 302 (285)

C13 (GPa) - 128 (165)

C33 (GPa) - 243 (222)

C44 (GPa) 153 (142) 647 (673)

Defect Ef W
ACE (DFT)

Re
ACE (DFT)

100 Dumbbell (eV) - 10.3 (11.4)

110 Dumbbell (eV) 9.61 (10.7) 8.90 (9.4)

111 Dumbbell (eV) 8.67 (10.4) 8.57 (9.3)

Vac/Sub (eV) 3.08 (3.27) 0.17 (0.13)

*DFT values in ( )

Ecoh W Re

BCC (eV) -8.91 (-8.9) -7.76 (-7.71)

HCP (eV) - -8.02 (-8.03)

FCC (eV) -8.66 (-8.4) -7.95 (-7.96)

Trigonal (eV) - -8.00 (-7.97)

Vac W SIA Re

2.29 (1.69) 0.02 (0.003) 0.13 (0.12)

Migration Barriers

Re-Re Binding Energies



Testing Of Initial W-Re ML-IAP – Issue With Ordered Phase

15

ACE successfully used for 5 KeV 
PKA Simulation

MC-MD Results Indicate Formation of 
Ordered Phase at Low Temperatures

*MC-MD performed by 
Yusheng Jin and 

Spencer Thomas (SBU)

Re-V EB ACE DFT

1NN 0.14 0.3

2NN -0.03 0.25

3NN -0.08 0.05

4NN 0.03 0.08

5NN -0.03 0.1

ACE Underpredicts Re-V 
Binding Energy



Ordered Phase Due to Positive Re-Re Binding Energy

16

Re-Fit of W-Re ML-IAP

New Objective Functions:
- Re-Re NN binding 
energies

- Re-Vac binding energy

Re-Re 2NN Binding Energy Too High

Attractive Re-Re binding energy at 2NN 
resulting in ordered phase forming



Refit ACE W-Re ML-IAP

17

Elastic 
Constants     

W 
ACE (DFT)

Re
ACE (DFT)

C11 (GPa) 360  (517) 635 (614)

C12 (GPa) 240  (198) 298 (285)

C13 (GPa) - 103 (165)

C33 (GPa) - 218 (222)

C44 (GPa) 128 (142) 669 (673)

Defect Ef W
ACE (DFT)

Re
ACE (DFT)

100 Dumbbell (eV) - 8.35 (11.4)

110 Dumbbell (eV) 8.92  (10.7) 7.50 (9.4)

111 Dumbbell (eV) 7.76 (10.4) 6.86 (9.3)

Vac/Sub (eV) 2.90  (3.27) -0.18 (0.13)

Ecoh W Re

BCC (eV) -8.9  (-8.9) -7.79 (-7.71)

HCP (eV) - -8.03  (-8.03)

FCC (eV) -8.8  (-8.4) -7.94  (-7.96)

Trigonal (eV) - -8.00   (-7.97)

Vac W SIA Re

2.29  (1.69) 0.001 (0.003) 0.12  (0.12)

Migration Barriers

Energy error: 0.034 eV/atom

Force error: 0.18 eV/Å-atom

Re-V Binding EnergiesRe NN Binding 
Energies



Developing Advanced Tungsten Materials
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• Tungsten is currently a candidate material but 
suffers from a high ductile-to-brittle transition 
temperature and low recrystallization temperature

• Divertor material needs to balance a variety of 
properties

Tungsten First-Wall Properties 

• Alloying tungsten with other elements has 
shown to increase strength properties but 
dependence on radiation tolerance is 
unknown

Z. Cheng , et al. Journal of Alloys and Compounds 930 (2023) 166768

How do we optimize alloy composition 
when the parameter space is vast?



Molecular Dynamics Can Quickly Sample Compositional Space

Simulations

•   He implantation

• 100 eV He implantation

• 1000 K

• (100) surface

• 15 ns of simulation time

•  Molecular statics

• He formation energies

• He migration barriers

19

Analysis

• Helium bubble damage and He energetics

Compositional Analysis - MoNbTaTi

5% 25% 15% 50% 33% 

17 Total Compositions Analyzed

M.J. McCarthy, et al. J. Appl. Phys. 137, 175108 (2025)

Energy 
Barriers

Distance



Helium Cluster Size Increases with Atomic Volume per Composition20

He Clustering at 15 ns Cluster Size Increases with Increasing Atomic Volume
He/V Decreases with Increasing Atomic Volume

M.J. McCarthy, et al. J. Appl. Phys. 137, 175108 (2025)

Top-Down 
View

Side 
View

6 nm



Lower Atomic Volume Results in Increased Migration Barriers Which 
Reduces Cluster Size21

Increasing atomic volume decreases the migration barrier

M.J. McCarthy, et al. J. Appl. Phys. 137, 175108 (2025)

5% Nb

Purple: Helium

5% Mo

Med. Cluster Size: 14.5

Med. Cluster Size: 6.5

50% Mo

Med. Cluster Size: 4.5



Testing Of Alloys Under Fusion Relevant Helium Plasmas

• Samples prepared using directed energy deposition

▪ NbTa, NbTaMo, NbTaTi, NbTaMoTi

▪ Testing of initial alloys from MD study

• Helium exposures performed at PISCES-RF linear plasma 
device at UCSD

▪ 40 eV He flux of 7x1022 m-2s-1

▪ Accumulated ion fluence of 2x1026 m-2 at 1000 K

▪ Optical emission spectroscopy performed in-situ

• Post characterization performed at UNM:

▪ SEM, FIB, SEM-EDS, SEM-EBSD, XPS

22

M. Baldwin, et al. Nuclear Materials and Energy 39 (2024) 101626



Local Composition Impacts Nanotendril Features

23
S. Evans, et al. Nucl. Mater. Energy (2025) Accepted

Nanostructuring Depends on Local Composition
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S. Evans, et al. Nucl. Mater. Energy (2025) Accepted

Local Composition Evolves Over Time Resulting In Enrichment/Depletion Of 
Different Elements In The Tendril And Bulk Regions

52%

80%

48%0%

0%
20%

28%

49%

37%

0%

16%

2%

TaNbMo TaNbMoTi

19%

49%

Ta

Nb Mo

Mo

Nb

Ta

Ti



Lower Migration Barriers Result in Larger Bubble Size

25

He Implantations Under PISCES-RF conditions

MD Migration Barriers vs. Experimental Bubble Size

Bubble Sizes:

Experimental: 5.87 nm3

MD: 8 He

Bubble Sizes:

Experimental: 2.26 nm3

MD: 4 He

NbTaMo NbTaTi



Summary and Future Work
Summary

• Designing plasm—facing components is challenging 
and requires information at the atomistic scale

• ML-IAPs like ACE can improve accuracy of chemically 
complex IAPs used for modeling extreme conditions

• We have developed multiple first wall ML-IAPS that 
incorporate transmutation products and multi-
component potentials that reproduce experimental 
results

Future Work

• Further refinement of ML-IAPs

• Atomistic modeling of PKA damage with 
transmutation products

• Incorporation of H/He in ML-IAPs

26

Contact: 
mcusent@sandia.gov



Emission Spectroscopy Indicates Ti and Nb Preferentially Sputter

27

Lack of Ti and Nb in 
the tendrils is 

linked to sputtering 
of these elements 
as indicated by the 
spectroscopy data



Ti Is Less Strongly Bound to the Surface

28

NbTaMo NbTaTi

NbTaMoTi

Composition Nb Ta Ti Mo Average

NbTaMo 8.28 9.04 - 6.93 8.25

NbTaTi 8.05 8.30 5.60 - 7.89

NbTaMoTi 8.31 8.59 5.80 6.84 7.20

Ti has lowest surface binding 
energy resulting in increased 

sputtering

NbTaMo would likely have 
lowest sputtering due to 
highest average surface 

binding energy

Surface Binding Energy
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